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Preface

The information generated by progressive biomedical research is increasing
rapidly, resulting in a tremendous increase in the biological data resource, includ-
ing protein and gene databases, model organism databases, annotation databases,
biomolecular interaction databases, microarray data, scientific literature data,
and much more. The challenge is in representation, integration, analysis and
interpretation of the available knowledge and data. The book, Knowledge-Based
Bioinformatics: From Analysis to Interpretation , is an endeavor to address the
above challenges. The driving force is the need for more background information
and broader coverage of recent developments in the field of knowledge-based
systems and data-analysis approaches, and their applications to deal with issues
that arise from the current increase of biological data in genomic and proteomic
research. Also, opportunity exists in utilizing these vast amounts of valuable
information for benefit in fitness and disease conditions.

Knowledge-Based Bioinformatics: From Analysis to Interpretation , introduces
knowledge-driven approaches, methods, and implementation techniques for
bioinformatics. The book includes coverage from data-driven Bayesian networks
to ontology-based analysis with applications in the field of bioinformatics. It is
divided into four sections. The first section provides an overview of knowledge-
driven approaches. Chapter 1, Knowledge-based bioinformatics , presents the
current status of biomedical research and significance of knowledge-driven
approaches in analyzing the data generated. The focus is on current utilization of
the approaches and further enhancement required for advancing the biomedical
knowledge. Chapter 2, Knowledge-driven approaches to genome-scale analysis ,
further explains the concept and covers various systems used for supporting
biomedical discovery in genome-scale data. It emphasizes the importance of
the knowledge-driven approaches for utilizing the existing knowledge, and
challenges to overcome in their development and application. Chapter 3,
Technologies and best practices for building bio-ontologies, reviews the process
of building bio-ontologies, analyzing the benefits and problems of modeling
biological knowledge axiomatically, especially with regards to automated
reasoning. It also focuses on various knowledge representation languages,
tools and community-level best practices to help the reader to make informed
decisions when building bio-ontologies. In Chapter 4, Design, implementation
and updating of knowledge bases, the focus is on architecture of knowledge
bases. It describes various bioinformatics knowledge bases and the approach
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taken to meet the challenges of acquisition, maintenance, and interpretation of
large amounts of data, and the methodology to efficiently mine the data.

In the second section, the focus shifts from knowledge-driven approaches
to data-analysis approaches. Chapter 5, Classical statistical learning in bioin-
formatics , reviews various statistical methods and recent advances in analysis
and interpretation of the data. Also in this chapter, classical concerns with mul-
tiple testing with focus on the empirical Bayes method, practical issues to be
considered in treatments for genomics, various investigative analysis procedures,
and traditional and modern classification procedures are reviewed. Chapter 6,
Bayesian methods in genomics and proteomics studies , provides further insight
into the Bayesian methods. The chapter focuses on concepts in Bayesian meth-
ods, computational methods for statistical inference of Bayesian models, and
their applications in genomics and proteomics. Chapter 7, Automatic text anal-
ysis for bioinformatics knowledge discovery , introduces the basic concepts and
current methodologies applied in biomedical text mining. The chapter provides
an outlook on recent advances in automatic literature analysis and the contribu-
tion to knowledge discovery in the biomedical domain as well as integration of
bioinformatics knowledge bases and the results from automatic literature analysis.

The third section covers gene and protein information. Chapter 8, Funda-
mentals of gene ontology functional annotation , reviews the current approach
to functional annotation with emphasis on Gene Ontology annotation. Also,
the chapter reviews currently available mainstream GO browsers and methods
to access GO annotations from some of the more specialized GO browsers,
as well as the effect of functional gene annotation on biological data analy-
sis. Chapter 9, Methods for improving genome annotation, focuses on recent
progress in automated and manual annotations and their application to produce
the human consensus coding sequence gene set, and also describes various types
of non-coding loci found within the human genome. Chapter 10, Sequences from
prokaryotic, eukaryotic, and viral genomes available clustered according to phy-
lotype on a Self-Organizing Map, demonstrates a novel bioinformatics tool for
large-scale comprehensive studies of phylotype-specific sequence characteristics
for a wide range of genomes. The chapter discusses this interesting method of
genome analysis that could provide a new systematic strategy for revealing micro-
bial diversity, relative abundance of different phylotype members of uncultured
microorganisms, and unveil the genome signatures.

In the fourth and last section, the book moves to biomolecular relationships
and meta-relationships. Chapter 11, Molecular network analysis and applications ,
provides an overview of current methods for analyzing large-scale biomolecu-
lar networks and major applications on biological problems using these network
approaches. Also, this chapter addresses the current and next-generation net-
work visualization and analysis tools and future challenges in analyzing the
biomolecular networks. Chapter 12, Biological pathway analysis: an overview
of Reactome and other integrative pathway knowledge bases , provides further
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insight into the use of pathway analysis tools to identify relevant biological path-
ways within large and complex data sets derived from various high-throughput
technology platforms. The focus of the review is on the Reactome database
and several closely related pathway knowledge bases. Chapter 13, Methods and
challenges of identifying biomolecular relationships and networks associated with
complex diseases/phenotypes, and their application to drug treatments , explores
various interesting methods to infer regulatory biomolecular interactions as well
as meta-relationships and molecular relationships in complex disorders and drug
treatments. The chapter addresses the challenges involved in the mapping of dis-
ease symptoms, identifying novel drug targets, and tailoring patient treatments.

The book, Knowledge-Based Bioinformatics: From Analysis to Interpretation ,
is the outcome of an international effort, including contributors from 19 insti-
tutions located in 7 countries. It brings into light the pioneering research and
cutting-edge technologies developed and used by leading experts, and their com-
bined efforts to deal with large volumes of data and derive functional knowledge
to enhance biomedical research. The extensive coverage of topics from fun-
damental methods to application make it a vital reference for researchers and
industry professionals, and an essential text for upper level undergraduate/first
year graduate students studying the subject.

For the publication of this book, the contribution of many people from this
cross-disciplinary field of bioinformatics has been significant. The editors would
like to thank the contributing authors including: Eric Karl Neumann (Ch. 1), Han-
nah Tipney (Ch. 2), Lawrence Hunter (Ch. 2), Mikel Egaña Aranguren (Ch. 3),
Robert Stevens (Ch. 3), Erick Antezana (Ch. 3), Jesualdo Tomás Fernández-Breis
(Ch. 3), Martin Kuiper (Ch. 3), Vladimir Mironov (Ch. 3), Sarah Hunter (Ch. 4),
Rolf Apweiler (Ch. 4), Maria Jesus Martin (Ch. 4), Mark Reimers (Ch. 5), Ning
Sun (Ch. 6), Hongyu Zhao (Ch. 6), Dietrich Rebholz-Schuhmann (Ch. 7), Jung-
jae Kim (Ch. 7), Varsha K. Khodiyar (Ch. 8), Emily C. Dimmer (Ch. 8), Rachael
P. Huntley (Ch. 8), Ruth C. Lovering (Ch. 8), Jonathan Mudge (Ch. 9), Jennifer
Harrow (Ch. 9), Takashi Abe (Ch. 10), Shigehiko Kanaya (Ch. 10), Toshimichi
Ikemura (Ch. 10), Minlu Zhang (Ch. 11), Jingyuan Deng (Ch. 11), Chunsheng
V. Fang (Ch. 11), Xiao Zhang (Ch. 11), Long Jason Lu (Ch. 11), Robin A. Haw
(Ch. 12), Marc E. Gillespie (Ch. 12), Michael A. Caudy (Ch. 12) and Mie Rizig
(Ch. 13). The editors would also like to thank the book proposal and book draft
anonymous reviewers. The editors would like to thank all the people who helped
in reviewing the manuscript. The editors would like to acknowledge and thank
Alpa Bajpai for her important role in editing this book.

Gil Alterovitz, Ph.D.
Marco Ramoni, Ph.D.
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PART I

FUNDAMENTALS





Section 1

Knowledge-Driven
Approaches





1

Knowledge-based
bioinformatics

Eric Karl Neumann

1.1 Introduction

Each day, biomedical researchers discover new insights about our biological
knowledge, augmenting by leaps our collective understanding of how our bodies
work and why they fail us at times. Today, in one minute we accumulate as
much information as we would have from an entire year just three decades ago.
Much of it is made available through publishing and databases. However, any
group’s effective comprehension of this full complement of knowledge is not
possible today; the stream of real-time publications and database uploads cannot
be parsed and indexed as accessible and application-ready knowledge yet. This
has become a major goal for the research community, so that we can utilize the
gains made through the all the funded research initiatives. This is what we mean
by biomedical knowledge-driven applications (KDAs).

Knowledge is a powerful concept and is central to our scientific pursuits.
However, knowledge is a term that too often has been loosely used to help sell
an idea or a technology. One group argues that knowledge is a human asset,
and that all attempts to digitally capture it are fruitless; another side argues that
any specialized database containing curated information is a knowledge system.
The label ‘knowledge’ comes to connote information contained by an agent or
system that (we wish) appears to have significant value (enough to be purchased).
Although the freedom to use labels and ideas should not be impeded, an agreed

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
 2010 John Wiley & Sons, Ltd



6 KNOWLEDGE-BASED BIOINFORMATICS

use of concepts like knowledge would help align community efforts, rather than
obfuscate them. Without this consensus, we will not be able to define and apply
principles of knowledge to relevant research and development issues that would
serve the public. The definition for knowledge needs to be clear, uncomplicated,
and practical:

(1) Some aspects of Knowledge can be digitized, since much of our lives
depends on the use of computers and the Internet.

(2) Knowledge is different from data or stored information; it must include
context and sufficient embedded semantics so that its relevancy to a prob-
lem can be determined.

(3) Information becomes Knowledge when it is applicable to more general
problems.

Knowledge is about understanding acquired and annotated (sometimes validated)
information in conjunction with the context in which it was originally observed
and where it had significance. The basic elements in the content need to be appro-
priately abstracted (classification) into corresponding concepts (usually existing)
so that they can be efficiently reapplied in more general situations. A future medi-
cal challenge may deal with different items (humans vs. animals), but nonetheless
share some of the situational characteristics and generalized ideas of a previously
captured biomedical insight. Finding this piece of knowledge at the right time
so that it can be applied to an analogous but distinct situation is what sepa-
rates knowledge from information. Since this is something humans have been
doing by themselves for a long time, we have typically been associating knowl-
edge exclusively with human endeavors and interactions (e.g., ‘sticky, local, and
contextual,’ Prusak and Davenport, 2000).

KDA is essential for both industrial and academic biomedical research; the
need to create and apply knowledge effectively is driven by economic incentives
and the nature of how the world works together. In industry, the access to public
and enterprise knowledge needs to be both available and in a form that allows
for seamless combinations of the two sets. Concepts must enable the bridging
between different sources, such that the connected union set provides a business
advantage over competitors. Academic research is not that different in having
internal and external knowledge, but once a novel combination has been found,
validated and expounded, the knowledge is then submitted to peer review and
published in an open community. Here, rather than supporting business drivers,
scientific advancement occurs when researchers strive to be recognized for their
contribution of novel and relevant scientific insights. The free and efficient
(and sometimes open) flow of knowledge is key in both cases (Neumann and
Prusak, 2007).

In preparation for the subsequent discussions, it is worth clarifying what will
be meant by data, information, and knowledge. The experimentalists’ defini-
tion of data will be used for the most part unless otherwise noted, and that is
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information measured or generated by experiments. Information will refer to all
forms of digitized resources (aka data by other definitions) that can be stored
and recalled from a program; it may or may not be structured. Finally, based
on the above discussion, knowledge refers to information that can be applied to
specific problems, usually separate from the sources and experiments from which
they were derived. Knowledge can exist in both humans and digital systems, the
former being more flexible to interpretation; the latter relies on the application
of formal logic and well-defined semantics.

This chapter begins by providing a review of historical and contemporary
knowledge discovery in bioinformatics, ranging from formal reasoning, to knowl-
edge representation, to the issues surrounding common knowledge, and to the
capture of new knowledge. Using this initial background as a framework, it then
focuses on individual current knowledge discovery applications, organized by the
various components and approaches: ontologies, text information extraction, gene
expression analysis, pathways, and genotype–phenotype mappings. The chapter
finishes by discussing the increasing relevance of the Web and the emerging
use of Linked Data (Semantic Web) ‘data aggregative’ and ‘data articulative’
approaches. The potential impact of these new technologies on the ongoing
pursuit of knowledge discovery in bioinformatics is described, and offered as
practical direction for the research community.

1.2 Formal reasoning for bioinformatics

Computationally based knowledge applications originate from AI projects back
in the late 1950s that were designed to perform reasoning and inferencing based
on forms of first-order logic (FOL). Specifically, inferencing is the processing
of available information to draw a conclusion that is either logically plausible
(inconclusive support) or logically necessary (fully sufficient and necessary).
This typically involves a large set of chained reasoning tasks that attempt to
exhaustively infer precise conclusions by looking at all available information
and applying specified rules.

Logical reasoning is divided into three main forms: deduction, induction, and
abduction. These all involve working with preconditions (antecedents), conclu-
sions (consequents), and the rules that associate these two parts. Each one tries
to solve for one of these as unknowns given the other two knowns. Deduction
is about solving for the consequent given the antecedent and the rule; induc-
tion is about finding the rule that determines the consequent based on the known
precondition; and abduction is about determining the precondition based on the
conclusions and the rules followed. Abduction is more prone to problems since
multiple preconditions can give rise to the same conclusions, and is not as fre-
quently employed; we will therefore focus only on deduction and induction here.

Deduction is what most people are familiar with, and is the basis for syllo-
gisms: ‘All men are mortal; Socrates is a man: Therefore Socrates is mortal!’
Deductive reasoning requires no further observations; it simply requires applying
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rules to information on preconditions. The difficulty is that in order to perform
some useful reasoning, one must have a lot of deep knowledge in the form of
rules so that one can produce solid conclusions. Mathematics lends itself well
here, but attempts to do this in biology are limited to simple problems: ‘P53 plays
a role in cancer regulation; Gene X affects P53: Therefore Gene X may play a
role in a cancer.’ The rule may be sound and generalized, but the main shortcom-
ing here is that most people could have performed this kind of inference without
invoking a computational reasoner. Evidence is still scant that such reasoning
can be usefully applied to areas such as genetics and molecular biology.

Induction is more computationally challenging, but may have more real-world
applications. It benefits from having lots of evidence and observations on which
to create rules or entailments, which, of course, there is plenty of in research.
Induction works on looking for patterns that are consistent, but can be relaxed
using statistical significance to allow for imperfect data. For instance, if one
regularly observes that most kinases downstream of NF-kB are up-regulated in
certain lymphomas, one can propose a rule that specifies this up-regulation rela-
tion in these cancers. Induction produces rule statements that have antecedents
and consequents. For induction to work effectively one must have (1) sufficient
data, including negative facts (when things didn’t happen); (2) sufficient associ-
ated data (metadata), describing the context and conditions (experimental design)
under which the data were created; and (3) a listing of currently known asso-
ciations which one can use to specifically focus on novel relations and avoid
duplication. Induction by itself cannot determine cause and effect, but with suf-
ficient experimental control, one can determine which rules are indeed causal.
Indeed, induction can be used to generate hypotheses from previous data in order
to design testable experiments.

Induction relies heavily on the available facts present in sources of knowledge.
These change with time, and consequently inductive reasoning may yield different
results depending on what information has recently been assimilated. In other
words, as new facts come to light, new conclusions will arise out of induction,
thereby extending knowledge. Indeed, a key reason that standardized databases
such as Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) exist is
so we can discover new knowledge by looking across many sets of experimental
data, longitudinally and laterally.

Often, reasoning requires one to make ‘open world assumptions’ (OWAs)
of the information (e.g., Ling-Ling is a panda), which means that if a relevant
statement is missing (Ling-Ling is human is absent), it must be assumed plausible
unless (1) proven false (Ling-Ling’s parents are not human), (2) shown to be
inconsistent (pandas and humans are disjoint), or (3) the negation of the statement
is provided (Ling-Ling is not human). OWAs affect deduction by expanding the
potential solution space, since some preconditions are unknown and therefore
unbounded (not yet able to be fixed). Hence, a receptor with no discovered
ligand should be treated as a potential receptor for many different signaling
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processes (ligands are often associated with biological processes). Once a ligand
is determined, the signaling consequences of the receptor are narrowed according
to the ligand.

With induction, inference under OWAs will usually be incomplete, since a
rule cannot be exactly determined if relevant variables are unknown. Hence some
partial patterns may be observed, but they will appear to have exceptions to the
rule. For example, a drug target for colon cancer may not respond to inhibitors
reliably due to regulation escape through an unbeknownst alternative pathway
branch. Once such a cross-talk path is uncovered, it becomes obvious to try
and inhibit two targets together, one in each pathway, to prevent any regulatory
escape (aka combinatoric therapy).

Another relevant illustration is the inclusion of Gene Ontology (GO) terms
within gene records. Their presence suggests that evidence exists to recommend
assigning a role or location to the gene. However, the absence of the attribute
‘regulation of cell communication’ could signify a few things: (1) the gene has
yet to be assessed for involvement in ‘regulation of cell communication’; (2) the
gene has been briefly reviewed, and no obvious evidence was found; and (3) the
gene has been thoroughly assessed by a sufficient inclusionary criteria. Since there
is no way to determine, today, what the absence of a term implies, this would
suggest that knowledge mining based on presence or absence of GO terms will
often be misleading.

OWAs often cannot be automatically applied to relational database manage-
ment systems (RDBMSs), since the absence of an entry or fact in a record may
indeed mean it was measured but not found. A relational database’s logical con-
sistency could be improved if it explicitly indicated which facts were always
measured (i.e., lack of fact implies measured and not observed), and which ones
were sometimes measured (i.e., if measured, always stated, therefore lack of fact
implies not measured). The measurement attribute would need to include this
semantic constraint in an accessible metamodel, such as an ontology.

Together, deduction and induction are the basis for most knowledge discovery
systems, and can be invoked in a number of ways, including non-formal logic
approaches, for example SQL (structured query language) in relational databases,
or Bayesian statistical methods. Applying inference effectively to large corpora of
knowledge requires careful planning and optimization, since the size of informa-
tion can easily outpace the computation resources required due to combinatorial
explosion. It should be noted that biology is notoriously difficult to generalize
completely into rules; for example, the statement ‘P is a protein iff P is triplet-
encoded by a Gene’ is almost always true, but not in the case of gramicidin D, a
linear pentadecapeptide that is synthesized de novo by a multi-enzyme complex
(Kessler et al., 2004). The failure of AI, 25 years ago, was in part due to not real-
izing this kind of real-world logic problem. We hope to have learned our lessons
from this episode, and to apply logical reasoning to large sets of bioinformatic
information more prudently.
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1.3 Knowledge representations

Knowledge Representations (KRs) are essential for the application of
reasoning methodologies, providing a precise, formal structure (ontology)
to describe instances or individuals, their relations to each other, and their
classification into classes or kinds. In addition to these ontological elements,
general axioms such as subsumption (class–subclass hierarchies) and property
restrictions (e.g., P has Child C iff P is a Father ∨ P is a Mother) can be defined
using common elements of logic. The emergence of the OWL Web ontology
language from the W3C (World Wide Web Consortium) means that such logic
expressions can be defined and applied to information resources (IRs) across the
Web, enabling the establishment of KRs that span many sites over the Internet
and many kinds of information resources. This is an attractive vision and could
generate enormous benefits, but in order for all KRs to work together, there still
needs to be coherence and consistency between the ontologies defined (in OWL)
and used. Efforts such as the OBO (Open Biomedical Ontologies) Foundry are
attempting to do this, but also illustrate how difficult this process is.

In the remainder of this chapter, we will take advantage of a W3C standard
format known as N3 (www.w3.org/TeamSubmission/n3/) for describing knowl-
edge representations and factual relations; the triple predicate form ‘A Brel C’ is
to be interpreted as ‘Entity A has relation Brel with entity C.’ Any term of the
form ‘?B’ signifies a named variable that can be anything that makes the predicate
true; for example ‘?g a Gene’ means ?g could be any gene, and the double clause
‘?p a Protein. ?p is_expressed_in Liver’ means any protein is expressed in liver.
Furthermore, ‘;’ signifies a conjunction between phrases with the same subject
but multiple predicates (‘?p a Protein ; is_expressed_in Liver’ as in the above).
Lastly, ‘[]’ brackets are used to specify any entity whose name is unknown
(or doesn’t matter) but which has relations contained within the brackets: ‘?p
is_expressed_in [a Neural_Tissue; stage Embryonic].’ One should recognize that
such sets of triples result in the formation of a system of entity nodes related to
other entity nodes, better known as a graph.

1.4 Collecting explicit knowledge

A major prerequisite of knowledge-driven approaches is the need to collect and
structure digital resources as KRs (a subset of IRs), to be stored in knowledge
bases (KBs) and used in knowledge applications. Resources can include digital
data, text-mined relations, common axioms (subsumption, transitivity), common
knowledge, domain knowledge, specialized rules, and the Web in general. Such
resources will often come from Internet-accessible sources, and it is assumed
that they can be referenced similarly from different systems. Web accessibility
requires the use of common and uniform resource identifiers (URIs) for each
entity as well as the source system; the additional restriction of uniqueness is not
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as easy to implement, and can be deferred as long as it is possible to determine
whether two or more identifiers refer to the same thing (e.g., owl:sameAs).

In biomedical research, recognizing where knowledge comes from is just as
important as knowing it. Phenomena in biology cannot be rigorously proven as
in mathematics, but rather are supported by layers of hypotheses and combina-
tions of models. Since these are advanced by researchers with different working
assumptions and based on evidence that often is local, keeping track of the con-
text surrounding each hypothesis is essential for proper reasoning and knowledge
management. Scientists have been working this way for centuries, and much
of this has been done through the use of references in publications whenever
(hypothetical) claims are compared, corroborated, or refuted. One recent activity
that is bridging between the traditional publication model and the emerging KR
approach is the SWAN project (Ciccarese et al., 2008), which has a strong focus
on supporting evidence-based reasoning for the molecular and genetic causes of
Alzheimer’s disease.

Knowledge provenance is necessary when managing hypotheses as they either
acquire additional supporting evidence (accumulating but never conclusive), or
are disproved by a single critical fact that comes to light (single point of failure).
Modal logic (see below), which allows one to define hypotheses (beliefs) based
on partial and open world assumptions (Fagin et al., 1995), can dramatically
alter a given knowledge base when a new assumption or fact is introduced to
the reasoner (or researcher). As we begin to accumulate more hypotheses while
at the same time having to review new information, our knowledge base will be
subject to major and frequent inference-driven updates. This dependency argues
strongly for employing a common and robust provenance framework for both
scientific facts and (hypotheses) models. Without this capability, one will never
know for sure on what specific arguments or facts a model is based, hence
impeding effective Knowledge Discovery (KD). It goes without saying that this
capability will need to work on and across the Web.

The biomedical research community has, to a large extent, a vast set of com-
mon knowledge that is openly shared. New abstracts and new data are put on
public sites daily whenever they are approved or accepted, and many are indexed
by search engines and associated with controlled vocabulary (e.g., MeSH). How-
ever, this collection is not automatically or easily assimilated into individual
applications using knowledge representations, so that researchers cannot compare
or infer new findings against their existing knowledge. This barrier to knowledge
discovery could be removed by ensuring that new published reports and data are
organized following principles of common knowledge.

1.5 Representing common knowledge

Common knowledge refers to knowledge that is generally known (and
accessible) by everyone in a given community, and which can be formally
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described. Common knowledge usually differs from tacit knowledge (Prusak
and Davenport, 2000) and common sense, both of which are virtually impossible
to explicitly codify and which require assumptions that are non-deducible1. For
these reasons we will focus specifically on explicit common knowledge as it
applies to bioinformatic applications.

An example of explicit common knowledge is ‘all living things require an
energy source to live.’ More relevant to bioinformaticists is the central dogma
of biology which states: ‘genes are transcribed into mRNA which translate into
proteins; implying protein information cannot flow back to DNA,’ or formally:

∀ Protein ∃ Gene (Gene transcribes_into mRNA ∧ mRNA
translates_into

Protein) ⇒ ¬ (Protein reverse_translate Gene).

This is a very relevant chunk of common knowledge that not only maps proteins
to genes, but even constrains the gene and protein sequences (up to codon ambi-
guity). In fact, it is so common, that it has been (for many years) hard-wired into
most bioinformatic applications. The knowledge is therefore not only common,
but pervasive and embedded, to the point where we have no further need to
recode this in formal logic. However, this is not the case for more recent insights
such as SNP (single nucleotide polymorphism) associations with diseases, where
the polymorphism does not alter the codons directly, but the protein is either
truncated or spliced differently. Since the set of SNPs is constantly evolving,
it is essential to make these available using formal common knowledge. The
following (simplified) example captures this at a high level:

∀ Genetic_Disease ∃ Gene ∃ Protein ∃ SNP (SNP within
Gene ∧ Gene

expresses Protein ∧ SNP modifies Protein ∧ SNP associated
Genetic_Disease) ⇒ SNP root_cause_of Genetic_Disease.

Most of these relations (protein structure and expression changes) are being
curated into databases along with their disease and gene (and sequence) asso-
ciations. It would be a powerful supplement if such knowledge rules could be
available as well to researchers and their applications. An immediate benefit
would be to allow for application to extend their functionality without need for
software updates by vendors; simply download the new rules based on common
understanding to reason with local knowledge.

Due to the vastness of common knowledge around all biomedical domains
(including all instances of genes, diseases, and genotypes), it is very difficult to
explicitly formalize all of it and place it in a single KB. However, if one considers
public data sources as references of knowledge, then the amount of digitally

1 Tacit knowledge is often related to human habit and know-how, and is not typically encodable
and therefore not easily shared; common sense does involve logic but requires assumptions that
cannot be formally defined.
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encoded knowledge can be quickly and greatly augmented. This does require
some mechanism for wrapping these sources with formal logic, for example
associating entities with classes. Fortunately, the OWL-RDF (resource description
framework) model is a standard that supports this kind of information system
wrapping, whereby entities become identified with URIs and can be typed by
classes defined in separate OWL documents. Any logical constraints presumed
on database content (e.g., no GO process attribute means no evidence found
to date for gene) can be explicitly defined using OWL (and other axiomatic
descriptions); these would also be publicly accessible from the main source site.

Common knowledge is useful for most forms of reasoning, since it facil-
itates making connections between specific instances of (local) problems and
generalized rules or facts. Novel relations could be deduced on a regular basis
from the latest new findings, and deeper patterns induced from increasing num-
bers of data sets. Many believe that true inference is not possible without the
proper encoding of complete common knowledge. Though it will take time to
reach this level of common knowledge, it appears that there is interest in head-
ing towards such open knowledge environments (see www.esi-bethesda.com/
ncrrworkshops/kebr/index.aspx). If enough benefits are realized in biomedicine
along the way, more organized support will emerge to accelerate the process.

The process for establishing common knowledge can be handled by a form
of logic known as modal logic (Fagin et al., 1995), which allows different agents
(or scientists) to be able to reason with each other though they may have different
subsets of knowledge at a given time (i.e., each knows only part of the story).
The goal here is to somehow make this disjoint knowledge become common to
all. Here, common knowledge is (1) knowledge (ϕ) all members know about
(EGϕ), and importantly (2) something known by all members to be known to
the other members. The last item applies to itself as well, forming an infinite
chain of ‘he knows that she knows that he knows that. . .’ signifying complete
awareness of held knowledge(

Cϕ = limn→∞En...E2E1
Gϕ

)
.

Another way to understand this, is that if Amy knows X about something, and
Bob knows only Y, and X and Y are both required to solve a research problem
(possibly unknown to Amy and Bob), then Amy and Bob need to combine
their respective sets as common knowledge to solve a given problem. In the
real world this manifests itself as experts (or expert systems) who are called
upon when there is a gap in knowledge, such as when an oncologist calls on a
bioinformatician to help analyze biomarker results. Automating this knowledge
expert process could greatly improve the efficiency for any researcher when
trying to deduce if their new experimental findings have uncovered new insights
based on current knowledge.

In lieu of a formal method for accessing common knowledge, researchers
typically resort to searching through local databases or using Google (discussed
later) in hopes of filling their knowledge gaps. However, when searching a
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RDBMS with a query, one must know how to pose the query explicitly. This
often results in not uncovering any new significant knowledge, since one requires
sufficient prior knowledge to enter the right query in the first place, in which
case one is searching only ‘under the street lamp.’ More likely, only partic-
ular instances of facts are uncovered, such as dates, numeric attributes and
instance qualia. This is a distinguishing feature that separates databases from
knowledge bases, and illustrates that databases can support at best very focused
and constrained knowledge discovery. Specifically, queries using SQL produce
limited knowledge, since they typically do not uncover generalized relations
between things. Ontological relations rely on the ability to infer classes, groups
of relations, transitivity (multi-joins), and rule satisfiability; these are the instru-
ments by which general and usable knowledge can be uncovered. Standard
relational databases (by themselves) are too restrictive for this kind of reason-
ing and do not properly encode (class and relation) information for practical
knowledge discovery.

In many cases, in the bioinformatics community this has come to be viewed as
knowledge within databases. For example, the curated protein database Swiss-
Prot/UniProt is accepted as a high quality source of reviewed and validated
knowledge for proteins, including mutational and splice variants, relations to
disorders, and the complexes which they constitute. In fact, it is often the case
that curated sets of information are informally raised to the level of knowledge
by the community. This definition is more about practice and interpretation than
any formal logic definition. Nonetheless, it is relevant and valid for the commu-
nity of researchers, who often do apply logic constraints on the application of
this information: if a novel protein polymorphism not in Swiss-Prot is discov-
ered and validated, it is accepted as real and eventually becomes included into
Swiss-Prot.

Nonetheless, databases are full of valuable information and could be
re-formatted or wrapped by an ontological layer that would support knowl-
edge inference and discovery, defined here as implicit knowledge resources
(IR → KR). If this were to happen, structured data stores could be federated
into a system of biomedical common knowledge: knowledge agents could be
created that apply modal logic reasoning to crawl across different knowledge
resources on the Web in search of new insights. Suffice it to say, practical
modal logic is still an emerging and incomplete area of research. Currently,
humans are best at identifying which new facts should be incorporated into
new knowledge regarding a specific subject or phenomenon; hence researchers
would be best served by being provided with intelligent knowledge assistants
that can help identify, review, compare, and assimilate new findings from these
biomedical IRs. There is a lot of knowledge in biology that could be formally
common, consequently there is a clear need to transform public biomedical
information sources to work in concert with knowledge applications and
practices. Furthermore, this includes the Web, which has already become a core
component of all scientific research communities.
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1.6 Capturing novel knowledge

Not everything can be considered common knowledge; there are large collections
of local-domain knowledge consisting of works and models (published and pre-
published) created by individual research groups. This is usually knowledge that
has not been completely vetted or validated yet (hypotheses and beliefs), but
nonetheless can be accessed by others who wish to refute or corroborate the
proposed hypotheses as part of the scientific method. This knowledge is connected
to and relies on the fundamentals of biology, which are themselves common
knowledge (since they form the basis of scientific common ground). So this
implies that we are looking for a model which allows connecting local knowledge
easily with common knowledge.

Research information is knowledge that is in flux; it is comprised of
assumptions and proposed models (mechanisms of action). In modal logic
(Fagin et al., 1995) this is comparable to the KD45 axioms: an agent (individual
or system) can believe in something not yet proven true, but if shown to
be false, the agent cannot believe in it anymore; that is, logic contradictions
are not allowed. KD45 succinctly sums up how the scientific process works
with competing hypotheses, and how all parallel hypotheses can co-exist until
evidence emerges that proves some to be incorrect.

Therefore, the finding (by a research group), that a mutation in the BRCA2
gene is always associated with type 2 breast cancer, strongly argues against any
other gene being the primary cause for type 2 susceptibility. Findings that have
strong causal relations, such as nucleotide level changes and phenotypes of people
always carrying these, are prime examples of how new-findings knowledge can
work together with common knowledge. As more data is generated, this process
will need to be streamlined and automated; and to prevent too many false posi-
tives from being retained, the balanced use of logic and statistics will be critical.

The onslaught of large volumes of information being generated by experi-
ments and subsequent analyses requires proper data set tracking, including the
capture of experimental conditions for each study. The key to managing all these
associated facts is enforcing data provenance. Without context and provenance,
most experimental data will be rendered unusable for other researchers, a
problem already identified by research agencies (Nature Editorial, 2009).
Provenance will ensure a reliable chain of evidence associated by conditions and
working hypotheses that can be used to infer high-value knowledge associations
from new findings.

1.7 Knowledge discovery applications

Once common and local knowledge are available to systems in a machine-
interpretable form, the construction and use of knowledge-discovery applications
that can work over these sources becomes practical and empowering. KDA has its
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roots in what has been labeled Knowledge Discovery and Data Mining (KDD,
Fayyad et al., 1996), which consists of several computational approaches that
came together in the mid 1990s under a common goal. The main objective of
KDD is to turn collected data into knowledge, where knowledge is something of
high value that can be applied directly to specific problems. Specifically, it had
become apparent that analysts were ‘drowning in information, but starving for
knowledge’ (Naisbitt, 1982). It was hoped that KDD would evolve into a formal
process that could be almost entirely computationally driven. It was to assist
knowledge workers during exploratory data analysis (EDA) when confronted by
large sets of data. The extraction of interesting insights via KDD follows more
or less inductive reasoning models.

KDD utilizes approaches such as first-order logic and data mining (DM) to
extract patterns from data, but distinguishes itself from DM in that the patterns
must be validated, made intelligently interpretable, and applicable to a problem.
More formally, KDD defines a process that attempts to find expression patterns
(E) in sets of Facts (F) that have a degree of certainty (C) and novelty (N)
associated with them, while also being useful (U) and simple (S) enough to
be interpreted. Statistics plays a strong role in KDD, since finding patterns
with significance requires the proper application and interpretation of statistical
theories. Some basic KDD tools include Decision Trees, Classification and
Regression, Probabilistic Graphs, and Relational Learning. Most of these can
be divided into supervised learning and unsupervised learning. Some utilize
propositional logic more than others.

Key issues that KDD was trying to address include:

• Data classification

• Interpretation of outcomes (uncovering relations, extraction of laws)

• Relevance and significance of data patterns

• Identification and removal of confounding effects (Simpson’s paradox,
http://plato.stanford.edu/entries/paradox-simpson/).

Patterns may be known (or hypothesized) in advance, but KDD is supposed
to aid in the extraction of such patterns based on the statistical structure of
the data and any available domain knowledge. Clearly, information comes in
a few flavors: quantitative and qualitative (symbolic). KDD was intended to
take advantage of both wherever possible. Symbolic relations embedded in both
empirical data (e.g., what conditions were different samples subjected to?) and
domain knowledge (e.g., patient outcomes are affected by their genotypes) begin
to demonstrate the true symbolic nature of information. That is, data is about
tying together relations and attributes, whether it is arranged as tables of values
or sets of assertions. The question arises, how can we use this to more efficiently
find patterns in data? The key here is understanding that relational data can be
generalized as data graphs: collections of nodes connected by edges, analogous
to how formal relational knowledge structures are to function (see above).
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Indeed, all the KDD tools listed have some form of graph representation: deci-
sion trees, classification trees, regression weighted nodes, probabilistic graphs,
and relational models (Getoor et al., 2007). The linked nodes can represent sam-
ples, observations, background factors, modeling components (e.g., θi), outcomes,
dependencies, and hidden variables. It would follow that a common way to rep-
resent data and relational properties using graphs could help generalize KDD
approaches and allow them to be used in concert with each other. This is sub-
stantial, since we now have a generalized way for any application to access and
handle knowledge and facts using a common format system, based on graph rep-
resentation (and serialized by the W3C standard formats, RDF-XML or RDF-N3).

More recently, work by Koller and others has shown that the structure of data
models (relations between different tables or sets of things) can be exploited to
help identify significant relations within the data (Getoor et al., 2007). That is, the
data must already be in a graph-knowledge form in order to be effectively mined
statistically. To give an example, if a table containing tested-subject responses for
a treatment is linked to the treatment-dosing table and the genetic alleles table,
then looking for causal response relations is a matter of following these links and
calculating the appropriate aggregate statistics. Specifically, if one compares all
the responses in conjunction with the drug and dosing used as well as the subject’s
genotype, then by applying Bayesian inference, strong interactions between both
factors can be identified. Hence data graph structures can be viewed as first-order
‘hypotheses’ for potential interactions.

By the mid 1990’s, the notion of publishing useful information on the Web
began to take off, allowing it to be linked and accessed by other sites: the Web as
a system of common knowledge took root and applications began to work with
this. This was followed by efforts to define ontologies in a way that would work
from anywhere on the Web, and with anything that was localized anywhere on the
Web. A proposal was eventually submitted to the DARPA (Defense Advanced
Research Projects Agency) program to support typing things on the Web. It
was funded in 2000 and became known as the DAML (DARPA Agent Mark-up
Language, www.daml.org/) project. This became the forerunner of the Semantic
Web, and eventually transformed into the OWL ontology language that is based
on Description Logic (DL).

Dozens of applications for KDD have been proposed in many different
domains, but its effectiveness in any one area over the other is unclear. To this
end, an open challenge has been initiated, called the KDDCup (www.kdnuggets
.com/datasets/kddcup.html), to see how well KDD can be applied to different
problem spaces. It has gained a large following in bioinformatics, addressing
such diverse areas as:

• Prediction of gene/protein function and localization

• Prediction of molecular bioactivity for drug design

• Information extraction from biomedical articles

• Yeast gene regulation prediction
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• Identification of pulmonary embolisms from three-dimensional computed
tomography data

• Computer Aided Detection (CAD) of early stage breast cancer from X-ray
images.

KDD was conceived during a time when the shortcomings of AI had surfaced, and
the Web’s potential was just emerging. We are now in an age where documents
can be linked by other documents anywhere in the world; where communities
can share knowledge and experiences; where data can be linked to meaning. The
most recent rendition of this progress is the Semantic Web.

1.8 Semantic harmonization: the power
and limitation of ontologies

One of the most important requirements for data integration or aggregation is
for all data producers and consumers to utilize common semantics (Rubin et al.,
2006). In the past, it had been assumed that data integration was about common
formats (syntax), but that assumed that if one knows the structure, one can infer
the data meaning (semantics). This is now known to be grossly oversimplified,
and semantics must also be clearly defined. RDF addressed the syntax issue by
forcing all data relations to be binary based, therefore modeling all components
as triples (subject, relation/property, object).

The emergence of the W3C OWL ontology standard has enabled the formal
definition of many biological and medical concepts and relations. OWL is based
on description logic, a FOL formalism that was developed in the 1980s to support
class (concept) subsumption and relations between instances of classes. Using
OWL, a knowledge engineer can create class hierarchies of concepts that map to
real-world observations; for instance, ‘Genes are encoded in DNA and themselves
encode proteins.’ OWL’s other key feature is that it can be referenced from
anywhere on the Web (e.g., used by a database) and incorporated into other
non-local logical structures (ontology extension). It was designed to so that any
defined ontological components are identifiable nodes on the Web; that is, all
users can refer to the same defined Class. The most current version of OWL is
OWL2, based on SROIQ logic supporting more expressive logic (Horrocks et al.,
2006). The OWL format is modeled after the Resource Description Framework
(RDF) that will be described later.

The OWL standard allows knowledge systems to utilize ontologies defined by
various groups, such as Gene Ontology, UniProt, BioPAX, and Disease Ontol-
ogy. Data sets that one wishes to align with the ontologies now can apply a
well-specified mechanism: simply reference the ontology URI from within a
data documents and system. By doing so, all the data in the system is formally
associated with concepts, as well as the relations concepts have with each other.
Any third party also looking at the data can instantly find (over the Web) which
ontologies were used to define the set.
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Many of the current activities around developing ontologies in OWL are about
defining common sets of concepts and relations for molecular biology (genes,
proteins, and mechanisms) and biomedicine (diseases and symptoms). However,
there is still no general agreement of how (completely) to define basic concepts
(e.g., gene, protein) or what upper-level biological ontologies should look like
or do. It is not inconceivable that this process will take many years still.

1.9 Text mining and extraction

One common source of knowledge that many scientists wish to access is from the
unstructured text of scientific publications. Due to the increasing volume of pub-
lished articles, it is widely recognized (Hunter and Cohen, 2006) that researchers
are unable to keep up with the flow of new research findings. Much expectation
is placed on using computers to help researchers deal with this imbalance by
mining the content for the relevant findings of each paper. However, there are
many different things that can be mined out of research papers, and to do so
completely and accurately is not possible today. Therefore, we will focus here
only on the extraction of specific subsets of embedded information, including
gene and biomolecule causal effects, molecular interactions and compartments,
phenotype–gene associations, and disease treatments.

One way to mine content is simply to index key words and phrases based
on text patterns and usage frequency. This is all search engines do, including
Google. This does quite well in finding significant occurrences of words;
however it fails to find exactly what is being said about something, that is,
its semantics. For instance, indexing the phrase ‘. . . cytokine modulation may
be the basis for the therapeutic effects of both anti-estrogens in experimental
SLE.’ One can readily identify cytokine modulation (CM) and its association
with therapeutic effects (TE) or experimental SLE (xSLE), but the assertion that
‘CM is a TE for xSLE’ cannot be inferred from co-occurrence. Hence, limited
knowledge about things being mentioned can be obtained using indexing, such
as two concepts occurring in the same sentence, but the relation between them
(if there is one) remains ambiguous.

Word-phrase indexing is very practical for search, but for scientific knowl-
edge inquiries it is insufficient; what is specifically needed is the extraction of
relations R(A, B). Although more challenging, there has been a significant effort
invested to mine relations about specific kinds of entities from natural language.
This is referred to as Information Extraction (IE), and it relies much more
heavily on understanding some aspects of phrase semantics. Clearly this hinges
on predefining classes of entities and sets of relations that are semantically
mapped to each other (ontology). The objective of this is to quickly glean key
relations about things like biomolecules, biostructures, and bioprocesses from
research articles, thereby permitting the rapid creation of accessible knowledge
bases (KBs) about such entities.

As an example, if one wanted to find out (from published research) if a
particular gene is associated with any known disease mechanisms, one would
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query the KB for any relation of the form ?gene ?rel [a Disease] (as well as
[a Disease] ?rel ?gene). This form would allow any relation to a gene to be
identified from the KB, where ?rel could mean ‘is associated with,’ ‘influences,’
‘suppresses,’ or ‘is over expressed in.’ These relations should be defined in an
ontology and the appropriate domain and range entity classes explicitly included.
For IE to be most effective, it is useful to focus only on specific kinds of relations
one is interested in, rather than trying to support a universal set. This helps reduce
dealing with all the complexities of finding and interpreting specific relations from
word-phrase patterns in natural languages, a problem that is far from being solved
generically. Hence, it is desirable to have modules or cartridges for different IE
target tasks, and which utilize different ontologies and controlled vocabularies.

Several open source or publicly accessible IE systems exist, including
GATE, Geneways, OpenCalais, TextRunner, and OpenDMAP. OpenDMAP is
specifically designed to extract predicates defined in the OBO system of ontolo-
gies (Relationship Ontology, RO), specifically those involved in protein transport,
protein–protein interactions, and the cell-specific gene expression (Hunter
et al., 2008). They had applied it to over 4000 journals, where they extracted
72 460 transport, 265 795 interaction, and 176 153 expression statements, after
accounting for errors (type 1 and type 2). Many of the errors are attributable to
misidentification of genes and protein names. This issue will not be resolved by
better semantic tools, since it is more basic and related to entity identification.

One possibility being considered by the community is that future publica-
tions may explicitly include formal identifiers for entities in the text, as well
as controlled vocabularies, linked ontologies, and a specific predicate statement
regarding the conclusion of the paper. Automated approaches that create such
embedded assignments are being investigated throughout the research commu-
nity, but so far show varying degrees of completeness and correctness, that is,
both type 1 and type 2 errors. Much of this may be best avoided if the authors
would include such embedding during the writing of their papers. Attractive as
this sounds, it will require the development of easy to use and non-invasive tools
for authors that do not impact on their writing practices. It will be quite interesting
to follow the developments in this technology area over the next few years.

1.10 Gene expression

Gene Expression Analytics (GEA) is one of the most widely applied method-
ologies in bioinformatics, mixing data mining with knowledge discovery. Its
advantage is that it combines experimentally controlled conditions with large-
scale genomic measurements; as a technology platform has become commodi-
tized so it can be applied cost effectively to large samples. Its weakness is
that at best it is an average of many cells and cell types, which may be varied
states, resulting in confounder effects; in addition, transcript levels usually do not
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correspond to protein levels. It has become one of a set of tools to investigate
and identify biomarkers that can be applied to the research and treatment of dis-
eases. There is great expectation here to successfully apply knowledge-driven
approaches around these applications, justifying the enormous investment in
funded research and development to create knowledge to support the plethora
of next-generation research.

GEA works with experimentally derived data, but shows best results when
used in conjunction with gene annotations and sample-associated information;
in essence, the expression patterns for many genomic regions (including multi-
ple transcript regions per gene in order to handle splice variants) under various
sample conditions (multiple affected individuals, genotypes, therapeutic perturba-
tions, dosing, time-course, recovery). The data construct produced is an N × K

matrix, M , of expression levels, where N is the number of probes and K the num-
ber of samples. Much of the analytic enhancements have depended on performing
appropriate statistics using replicate samples. This allowed the separation of vari-
ance arising from individual sample uncertainty and errors from the experimental
factors that were being applied. The numeric data by itself can only support near-
est neighbor comparisons, resulting in the construction of cluster trees: one for
the relatedness of the expressing genes probed, the other for the relatedness of the
tissue samples expressing the transcripts. Although many researchers try to find
meaning in these cluster patterns (trees), they are for the most part artificial, due
primarily to the experimental design, and have very little basis in normal biology.

More has been gained by associating additional knowledge to this matrix M ,
such that both genes and samples have linked attributes that can be utilized in
deeper analyses. Examples include utilizing the GO ontology for each gene to see
if a correlation exists between the nearness of genes within the M -derived gene
cluster tree and the association of the genes with similar GO processes (Stoeck-
ert et al., 2002). Other gene relations can be utilized as well common pathways
(Slonim, 2002), common disease associations, and common tissue compartmen-
tation. The same approach can be applied to the samples themselves, including
variation in nutrients, genotypes (Cheung and Spielman, 2002), administered
drugs, dosing, and clinical outcomes (Berger and Iyengar, 2009).

What is worthwhile remarking here is that all these different experimental
design applications have a direct common correspondence with the mining of
the numerically derived structures of the data in M . That is, all the attributes
associated with genes or samples can be viewed as formal relations linked to
each instance or a gene or of a sample. For example, all genes Gi with attribute
Ak can be evaluated for their possible correlation with higher expression values
(Mij >z) over all samples Sj by testing for P(Mij > z|Gi.Ak), or even a sub-
set of samples Sj with similar characteristics Cl , P(Mij >z|Gi.Ak, Sj .Cl). As
described earlier, this generalization supports many forms of knowledge min-
ing, and therefore opens any applications of microarrays or biomarkers as fertile
ground for KDD.



22 KNOWLEDGE-BASED BIOINFORMATICS

1.11 Pathways and mechanistic knowledge

Pathways are the abstraction of molecular mechanisms that are the basis for
molecular functions and processes. They appear as graphs with directional flow;
however the edges can have multiple meanings, such as catalyzed stoichiometric
reactions (substrate, product as input, output respectively), protein signaling
cascades and transcription factor and binding site activation/repression of
genes. These structures can be further broken down into all the interactions
each of the molecules participates in, yielding interaction graphs that are not
obviously mapped to the process-oriented pathways. In each of these cases, the
structures can be represented as graph objects, that is, sets of nodes connected
by edges (Figure 1.1).

Fundamental to note is that pathways are not data; that is, they are not derived
from single experiments. Rather, they are the result of hypothesis building and

01326539

RAF1

NFKB1
NOTCH1

DLL1

LFNG

MFNG

JAG2 JAG1NOVNO

01228138

ELF1

LCK

AXIN2
AXIN1CSNKI

TP53

CSNK1D

DVL1

FRAT1
01176798

GSK3A

FM5687

AKT2

MAPK6

AKAP11

DNM11

DTX1

GPS2

E4F1
FM288

AKAP9

01460303

014301147

TYK2

PTK2

PTPN1

PKD1

APC

CSPG4

PM2278

PTPRH

AKT1

PRKC81

0132670BD6

AT2 GSK3B

DLL3

IL4R

01161489
GLE1L

NCF1

DLL4

01409743
01308538

INTN1

FM111

MAML1

M161

OTCH4
OTCH3

TSC22D3

267908

FBXW7

RM3814

FM2365

PRKAR1A 01382412
score

scorescore

members

members

membersmembers
members

mbers

members

mbers

mbers

members

ers

members

members

members

members

members

memb

members

members

members

membersmembers

memb
members

members
me members

members

members

members

mbers

bers

membe

members

mbers

members

embers

members

members

me

members

members

members

membersmembers
membersmembers

memb

LMNB1

300141
013270

FM1952

FM1966
RGS2

ILKAP

FM206 SCAR

M2160030

EFEMP2

ILK

members

members

me

members
members

members

members

members members

members

memb

members
members

membersmembers

members

members

members
mbersmembersembersembers

members
members

members

members

members
members

members
members

me

embers

bers

members

members

members

mbers

members

members

score

score

score

score

score

score

score

sco

score 01424

Figure 1.1 Assimilated knowledge around the GSK3b gene from HEFalMp
(Huttenhower et al., 2009), and its relations to other genes involved in similar
processes.
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re-visioning over many experiments (and many years), and reflect our current
knowledge of how biomolecules work together. In this regard, pathways are one
manifestation of biological knowledge, and can be coded as a series of statements
relating things to other things, that is, as graph objects with semantics (Losko and
Heumann, 2009). The linked entities (nodes) can be mapped to existing protein
and gene entities in other databases, thereby allowing pathways to be accessed
and queried via entities from these other external sources (see Section 1.14.3).

Pathway structures lend themselves well to knowledge representations (ADH1
catalyzes Ethanol_Acetylaldehyde_Reaction), and can therefore aggregate addi-
tional facts and relations onto them. Annotations that describe possible regulations
can be overlaid on top of these structures, possibly in another adjunct file (or
graph). By using references to pathway models, it is possible to build layers of
knowledge on top of more fundamental (canonical) pathways. These smart layers
can include additional interactions, disease associations, and known polymorphic
effects. Layers also provide a mechanism to describe and share additional knowl-
edge that can be easily connected to existing pathway models via any software
supporting the knowledge format. Reducing reliance on closed-vendor formats by
increasing application independence is an important goal for making knowledge
approaches successful.

The BioPax.owl ontology (currently as version 3) supports many kinds of
relations within pathways (pathway steps, biochemical reactions, catalysis, mod-
ulation, part of complex, stoichiometric groups), and provides an exchange format
supported by many pathway databases (Joshi-Tope et al., 2005). Basing pathway
information on an ontology means it is semantically structured, not just syntac-
tically. Not only can it be used to find substructures of interest, but one can also
infer new relations from it based on existing relations. As an example, if a kinase
K is known to down-regulate another signaling protein S, one can infer that all
the downstream proteins of S(D) will also be affected by the K kinase; this can
be expressed as a rule and applied whenever one wishes to find all downstream
affected components:

K down-regulates S AND S up-regulates D ⇒ K down-regulates D.

In addition, since molecular complexes are also modeled in BioPAX, a protein
P which is part of a complex X, which is also part of another complex Y , is
therefore also (P ) part of complex Y , based on transitivity. Sets of these basic
rules can be collected and applied strategically through a rule engine to help
scientists find things such as potential disease mechanisms or candidate targets
(Berger and Iyengar, 2009). Alternatively, mechanistic associations in conjunc-
tion with disease phenotypes can be used to explore novel drug applications (Qu
et al., 2009).This form of knowledge discovery has only begun to be explored,
and since its application potential is great, it will be important to see how it
evolves in the coming years. Its success depends largely on how much material
is accessible as digital knowledge, which recently has begun to look promising
(see Section 1.14.3).
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Often, pathways are used in parallel with GEA to better understand the roles
and dynamics of various components under different conditions, including pro-
gression of cancer. By clustering genes by expression changes one can investigate
if some pathways show correspondence of the encoded proteins with their loca-
tion within a pathway structure, for instance downstream of a key control point.
The summarization of many sources of evidence can be compiled into a compre-
hensive knowledge graph and used by researchers to find potential functionally
associated gene relations (Huttenhower et al., 2009; see Figure 1.1). Pathway
knowledge can also be combined with genotypic information to elucidate the
effects gene variations have on mechanisms (Holford et al. 2009).

The tools of KDD can be applied here to help mine any possible correspon-
dence between molecular interactions and classes of genes and their regulatory
elements. Specifically, a pathway can be viewed as a proposed model structure S
that can be the basis for analyzing expression dynamics using Bayesian network
analysis P(E|S, θ). If one allows the model to evolve to better match expression
data, the new relations can be interpreted as additional regulatory components
on top of the pathway that were not known before.

1.12 Genotypes and phenotypes

As a final case study of knowledge-driven analysis, consider the complex problem
of trying to identify relations between genotypes and phenotypes. This mapping
has become increasingly relevant as researchers attempt to associate large num-
bers of human gene polymorphisms with observed traits, typically referred to as
genome-wide associations (GWA). This analysis relies on the following existing
resources in order to work: (1) detailed maps of genes in vicinities of polymor-
phisms, and (2) observed traits from familial studies that link sets of phenotypes
and disorder symptoms to measured polymorphisms (Daly, 2010).

GWA by themselves cannot determine which specific gene is associated with
a disorder, just that the influence seems to be nearby a polymorphism. Since there
are multiple genes in these neighborhoods (∼100 Mb), the actual affecting gene
could be any one of these or even none of them. To further identify good gene
candidates for the trait, one needs to analyze multiple sources of information and
knowledge, including interactions and process membership (enrichment sets) with
other proteins known to be associated with the related trait. Evidence may also
come from animal models showing a related phenotype linked to the homologous
gene. Then there might also be corroboration by way of common tissue expression
for some of the genes, or even correlated expression changes due to a disease.
In reality, there are many lines of reasoning with potential evidence, so the need
for broad and flexible knowledge utilization is paramount.

Research into trait associations is ongoing and new evidence is continu-
ously being generated. In order to validate an association, one must support an
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accumulative knowledge model that can work with many kinds of relations and
assertions, implying no hard defined data schema. This is beyond the capability
of standard databases, and illustrates that traditional IT storage approaches will
not be sufficient to support most forms of knowledge discovery. Once again this
argues strongly for a linked relational approach such as using RDF.

Where one hopes this is heading is that one day we can bring together
all forms of information and knowledge to any set of experimental data and
hypotheses, and efficiently identify all possible logical explanations of a bio-
logical phenomenon, or the causes of a disease, or the possible treatments of
a cancer, or the prediction of responses to a therapy based on an individual’s
genotype and lifestyle.

1.13 The Web’s role in knowledge mining

We have seen how search has evolved over the last few years, and become a staple
of general computer use – clearly the simpler interface is a critical factor in the
case of Google. With the focus on knowledge, we should not lose sight of how the
interface of a knowledge system will determine its utility for different groups of
users. As a common example, the appearance of faceted browsing enables users
to better assess overall content and quickly direct focus onto relevant subsections
of it. This highlights a shift away from the ‘magic one-query’ paradigm to one
of quickly zooming onto the critical subset of assertion.

Biomedicine is about combining many forms of information effectively
towards the formation of predictive and causal models. The models themselves
define relations that are based on our abstracted knowledge, which applies to
many instances of systems: common molecular mechanisms in cells of similar
tissue types; altered regulation of cell growth in normal and neoplastic cells;
pathological similarities between human disease and animal models; variations in
cellular processes arising from genotypic differences between individuals. Fur-
thermore, many of our recent discoveries come from cross-pollination between
areas: mathematical models of evolving networks and neural development;
Green Fluorescent Protein (GFP) from algae and microscopy of cellular changes.

The scope of the required KD solutions must be broad enough to handle all
the sources of information that biomedicine and life science researchers need
in their increasingly interdisciplinary activities. That implies the utilization of
ontologies that can bridge the concepts and information sets related to these
sources. However, such ontologies should be defined not to impose our current
snapshot of how we think biology works, but rather serve as a set of components,
by which we can effectively describe new phenomena and derived hypotheses;
in other words, ontologies for constructions of new proposed models and views.

Since knowledge should not be thought of as having imposed boundaries, the
KD approaches offered must support the combination of data and ideas.
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1.14 New frontiers

1.14.1 Requirements for linked knowledge discovery

As previously described, most information potentially available for knowledge
applications is embedded within relational databases (RDBMSs). This is the most
common queriable storage format, upon which enormous infrastructures, both pub-
lic and private, have been built. RDBMSs have the following desirable benefits:

Information can be structured as needed, and defined in a schema.
The content is selected and cleaned before uploading to meet functional

quality.
SQL is a well-defined and validated query algebra that can be optimized.
Access control to databases is managed.

They also have the following limitations that arise out of these same advantages:

Their applications are limited by the original design goals.
The content cannot be easily expanded to include new kinds of information.
The database schema typically has no means to apply formal logic.
The query capability is limited to within a single database.
It is not straightforward to combine multiple databases over a network.

These limitations have hindered advancing knowledge discovery in life science
research environments by making the cost to extend systems prohibitively expen-
sive2. More so, in a world where scientific data arises from many locations and
with very different structures, scientists have been impeded from taking full
advantage of available knowledge from the community via the Internet. Bioin-
formatics has a strong hacker component that is constantly writing widgets and
shims to bridge existing but incompatible resources (Hull et al., 2004).

Several computer scientists have argued that ontologies are the solution to
this problem, but as pointed to above, broad validated ontologies are not easy to
create and do not trivially insert themselves into existing data systems. Ontologies
represent a mechanism (along with a community process) for specifying content
semantics, not a technology for bringing content together. The Linked Data model
attempts to address most of these issues, providing a mapping to contemporary
databases that supports federated queries and aggregation over the network. At
the same time, linked data enable the incorporation of ontologies, even multiple
ones. Two components necessary for data linking can be described using the
concepts of data aggregation and data articulation, which now will be addressed.

1.14.2 Information aggregation

Aggregation is the process to efficiently find and correctly (semantically) link
together information from multiple sources on the Web, based on relations

2 Indeed this has spurred a culture of ‘rebuild from scratch rather than build-upon.’
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specified either in the content, or by a validated bridge source (look-up). This
works best if the sources are already semantically defined and linking utilizes
a referential linking model such as RDF triples. Aggregation also implies that
not all information needs to be imported (i.e., massive data exchange) to build
aggregate information, since the reference to a node is enough to state that all
its other information is virtually connected as well. As an example, given the
following two information sets:

PCKMz isa Kinase_Gene ; is_expressed_in Neural_Tissue .

LTP is_necessary_for short-term_memory ; occurs_in
Hippocampus_Tissue ;

is_caused_by local_Neural_Stimulation .

These two data sets (graphs) are disjoint (unconnected) except for the implied
relation of Hippocampus_Tissue is a part of Neural_Tissue. If one now
creates (or obtains from another researcher) the following statements:

PCKMz inhibited_by XC3751 . XC3751 blocks LTP . PCKMz
has_role_in LTP .

Then once combined with the rest, these have the effect of connecting the pre-
vious statements (structurally and semantically) via the common LTP reference.
Indeed, just knowing these facts is enough to connect the previous sets without
having to explicitly transport any of the actual statements: their connections are
available for discovery simply by accessing their URIs (e.g., all related informa-
tion of LTP) through the Web.

I can formulate a query to ask: ‘Which genes affect any kind of memory?’ I
could even do this using general concepts without using the specifics:

?aGene isa Gene; involved_in ?memProc . ?memProc isa
Memory_Process .

Where the relation involved_in can be transitively inferred from the back-to-
back has_role_in and is_necessary_for relations. The answer returned is:

PCKMz isa Gene .

PCKMz has_role_in LTP .

LTP is_necessary_for short-term_memory .

:= PCKMz involved_in short-term_memory .

These applications of aggregations do not happen trivially over the Web;
reasoners require them to be pulled together in memory, either in one big
batch, or incrementally as information is needed. Since there is no restriction
(besides memory) on what one can aggregate, a researcher may wish to have all
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necessary information locally for computational efficiency. Aggregation simply
makes the task of finding, transporting and building linked data much more
efficient without needing to develop complex software architectures de novo;
this has been well illustrated by the Linked Open Data initiative.

1.14.3 The Linked Open Data initiative

As a specific example of data linking and aggregation on a grand scale, the Linked
Open Data (LOD, http://linkeddata.org/) initiative, which began in Banff at the
WWW2007 conference, is continuously aggregating many public data sources.
At the time of this writing, LOD has grown to over 7.7 billion triples over 130
different data sources (http://esw.w3.org/topic/TaskForces/CommunityProjects/
LinkingOpenData/DataSets/Statistics).

LOD addresses two points: (1) data from different sources are explicitly con-
nected (rather than pages), and (2) the full set can be queried together based
on their combined schema. LOD combines the notion of cloud computing and
public access to connected and queriable data (not just Web pages). The URIs
contained within serve as data identifiers that exactly pinpoint that record while
at the same time are the points of linking between different data sets, for example
ClinicalTrial and DrugBank. More recently, the Linked Open Drug Data (http://
esw.w3.org/topic/HCLSIG/LODD) component of LOD just won the 2009 tripli-
fication award for largest and most useful data sets converted to RDF (http://
triplify.org/Challenge/2009).

LOD is a live, Web-based proof-of-concept of what is possible if public data
can be connected. Most of the original data relations are preserved, and new ones
have been added between different sources when the relations where obvious.
All these sets can now be queried using SPARQL (Figure 1.2, clinical trials
data at http://linkedCT.org rendered with the Cytoscape S*QL plug-in). LOD is
to serve as a starting point as to what is possible within the public Web. As
discussed earlier, large-scale knowledge discovery requires robust and structured
accessibility to large sets of information, complete with semantic relations and
associated class definitions. LOD is helping point out how to move beyond our
current reliance on local databases, and prepare us to begin using structured
information on the Web to help solve complex, real-world challenges.

1.14.4 Information articulation

Pulling together information from different sources only gets you so far; infor-
mation can be collected, but it may be in a form that does not provide significant
value to specific inquiries, such as new insights that could arise from combined
relations between instances. This is a limitation with the current forms of linked
data, where data is available as a collected set, but does not necessarily offer any
deeper logical insights. This limitation is primarily semantic, and indicates that
there is more to knowledge mining than information models; additional logical
relations are usually required to pose deeper inquiries.
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Figure 1.2 Results of a SPARQL query on LinkedCT, a LOD resource from Clin-
icalTrials.gov, showing all the cancer clinical trials surrounding their respective
specific cancer groups. Concentricity indicates studies investigating multiple can-
cers together.

For example, if a data set of customers can be linked to a data set of prod-
ucts from multiple vendors, one can readily query and find which customers tend
to buy specific things from certain vendors, and which vendors offer products
sold most frequently. However the insight into which vendor products are sold
together (product–product relation) requires additional analytics and an expres-
sion to represent such novel associations (e.g., bought_with). The ability to infer
new meaningful relations from existing semantics and incorporate these as addi-
tional assertions into the existing knowledge set is defined here as information
articulation . The new relations increase the degrees of freedom of data nodes
and thereby the reusability of data sets; in essence, the new relations articulate
the data .

Information articulation can be best compared to the use of a spreadsheet
whereby a user inserts a new column whose cell values are the direct result
(computational output) of other existing columns from the same or different
worksheets. However, rather than cells being created with new values, existing
nodes (entities) are being linked by new (inferred) relations, or new nodes are
being created to hold N-ary (fused) relations. This can be in the form of transitive
closure (if A is part of B and B is part of C, then A is part of C) or other
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common rules (if Gene G is associated with Type 2 Diabetes, and Gene G is part
of Pathway P, then Pathway P is involved in Type 2 Diabetes). The articulation
takes the form of a rule: sets of specific relations create new deeper relations. The
knowledge of when to apply the rule comes from a deeper domain understanding.
Such knowledge may be defined within ontologies, but often a complex rule set
cannot be coded using standard ontological frameworks.

Articulation is usually monotonic, only adding new relations to existing ones,
without any deletions. The goal of information articulation is to create new usable
insights by making novel connections between existing knowledge and new
empirical data. Since novel relations must always be built from/on top of existing
substrates, there needs to be flexibility for adding them onto existing structures,
and this is what enables articulation. Another way to think about it is that when
one performs inferences on knowledge, the resulting ‘new findings’ need to be
connected with the input information so that they are retrievable and remain in
context. These relations must make semantic sense for their respective domains.

Information articulation requires a sufficient degree of domain semantics to
be known in order to make such inferences from initial entity sources (son-father-
brother → uncle). This also implies that one cannot know everything about the
information model in advance; the extension of knowledge needs to be done
in such a way that it does not create inconsistencies (UNCLE 	⊂ WOMAN).
Information articulation also helps differentiate between extensional sets (data
facts) and intensional sets (implied by semantics and reasoning). Intensional sets
are often more endowed with usable meaning for future inferencing. Knowledge
discovery will require that we can build upon facts by using tools and structures
that can further articulate information with usable meaning.

1.14.5 Next-generation knowledge discovery

We have presented an overview of the relation between information and knowl-
edge and how one can computationally apply knowledge to information to create
new knowledge. Much of the theory has emerged from decades of research, but
in the last several years, the combined expansion of the Web in conjunction with
advances in semantic standards and technologies have dramatically opened the
possibility of performing knowledge discovery on a global scale. Bioinformatics
is one domain that can begin to take advantage of these resources to advance our
understanding of biology and help us conquer diseases.

The key elements of knowledge discovery – logic, abstraction, relational
graphs, and statistical induction – must be combined in consistent and flexible
ways in order to address the richness of biomedical information. Once all of
the biomedical information has been structurally and semantically normalized,
many kinds of applications become possible. Comprehension of biological mech-
anisms will be critical for new therapeutics, and knowledge of one disease will
often be key to the understanding of a very different disease. Biology itself is
highly interlinked, so we will require information tools and logic that can match
these structures.
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In the near future, we will see new knowledge coming from multiple
communities over many projects. Standards for information are important, but
simply agreeing on the same formats and ontologies will not be sufficient.
Applications that search, aggregate, and analyze diverse information will have to
apply deeper logic fundamentals that cannot be addressed by ontologies alone.
Information articulation will be key to performing deeper inductive-driven
discovery across large volumes of information.

Pushing these new paradigms in the right direction is essential. New standards
need to used and assessed, and if validated, the community must be encouraged
to incorporate them into all our various resources, public as well as local. We still
have a long way to go for increased awareness and general acceptance. For the
most part, this will be driven by successful demonstrations of these information
technologies in the context of scientific research and as part of the scientific
process. In other cases they will become incorporated in commercial technologies
driven by new opportunities in biotechnology research and personalized medicine.
However, in all cases they will be chosen to realize benefits and improvements to
knowledge discovery. A scientific community based on the sharing and commerce
of knowledge discovery practices is closer at hand now than at any previous time
in our history.
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Knowledge-driven approaches
to genome-scale analysis

Hannah Tipney and Lawrence Hunter

2.1 Fundamentals

2.1.1 The genomic era and systems biology

Revolutionary changes in technologies that interrogate biological preparations
at genomic scale (high-throughput genomic and proteomic approaches, such as
expression microarrays, GWAS (Genome Wide Association Studies), ribosome
profiling/footprinting and ChIP-chips) have given molecular biologists the ability
to comprehensively study biological function and process, and their associa-
tions to disease. However, this capacity to quickly and cheaply assay biological
molecules on a large scale has also posed a profound challenge to the scientific
ability to analyze and explain the resulting data.

The breadth of these high-throughput, genome-wide studies has contributed
to a shift in how scientists view function. As most phenomena of interest to
biomedical research involve the concerted activity of hundreds of genes and
their products, the results of such high-throughput technologies are usually large
lists of genes deemed ‘interesting’ and potentially implicated in the biological
conditions under study. The definition of function has moved from that of a
single entity and its behavior, to the much wider concept of multiple interactions
between multiple entities and how their interactions may be altered in different
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environments at different times. In molecular biology, the biological molecules
of interest are genes and their products, so the focus has moved from single genes
to groups of interacting genes, proteins, non-coding RNAs and other molecules.

This approach is intuitive. Life itself is beautifully integrative and inter-
related; genes and their protein products function together in complex and
dynamic networks; the cells where they reside are intimately associated with
each other, forming intricate organs, which in turn contribute to systems, all of
which function together harmoniously to produce a viable and living organism.
The analysis of data from complete biological systems, and the study of how
these interactions give rise to function is more generally and broadly known as
systems biology (Hunter, 2009).

Understanding the importance of these large ‘interesting’ gene lists, how they
behave and how they contribute to function, process or disorder is a critically
important task. However, the analysis of such data that is both high in volume
and complexity requires significant support.

2.1.2 The exponential growth of biomedical knowledge

In order to fully understand how and why a group of genes or proteins function
together, one would like to be able to exploit the wealth of published biomedical
knowledge. Unfortunately this is not a simple task. To fully understand a group of
genes’ or proteins’ behavior, not only must knowledge associated with each gene
of interest be accessed, but also knowledge relating to their relationships to each
other and to the experimental scenario under study. For example, consider the
results of a mRNA microarray study that identified 200 genes whose expression
was deemed significantly different between breast cancer cells and normal breast
cells. All previous knowledge associated with each of the 200 individual genes,
all knowledge corresponding to the 40 000 (2002) possible interacting pairs of
genes or proteins, as well as the wealth of biomedical knowledge associated
with breast cancer, normal breast development, and cancer in general provide
the context for understanding the experimental result.

Biomedical knowledge is primarily captured and accessed in two ways: via
databases or from papers published in peer-review journals. In 2009, more than
1170 peer-reviewed databases capturing gene- and protein-centric data were
freely available to the public (Galperin and Cochrane, 2009). Such databases com-
prise a myriad of information, ranging from raw sequence data (GenBank (Benson
et al., 2008); www.ncbi.nlm.nih.gov/Genbank), to knowledge related to dis-
ease associations (OMIM (Amberger et al., 2009); www.ncbi.nlm.nih.gov/omim),
pathways (KEGG (Kanehisa et al., 2006); www.genome.jp/kegg/) and molecular
interactions (iRefWeb (Razick et al., 2008); http://wodaklab.org/iRefWeb/), all
of which may provide important context when investigating functional behav-
ior. The type of knowledge captured in these databases generally falls into
three categories: annotations, experimentally derived data, and the supporting
biomedical literature. Annotations provide basic information associated with an
individual gene or protein, such as function, location, structural components and
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roles in disease or disorder. Experimentally derived data encompasses everything
from expression profiles to GWAS data and population frequencies. And finally,
databases also frequently link directly to specific biomedical papers that support
and report the annotations and experimental data presented by a database.

Peer-reviewed biomedical literature is the richest, most complete and most
reliable source of data. However, it can also be the most overwhelming. PubMed
(Sayers et al., 2009; www.ncbi.nlm.nih.gov/pubmed), the online database of
biomedical literature housed at the National Center for Biotechnology Infor-
mation (NCBI) at the National Library of Medicine (NLM), has been growing
exponentially since the early 1980s (Figure 2.1). Currently, PubMed comprises
of over 19 million citations. In 2008, a total of 811 559 new entries were added
to the database at a rate of 2220 per day; far too many papers to read manually
(calculated from PubMed 2008 indexed entries. Accessed October 2009).

Furthermore, this flood of knowledge has been accompanied by the break-
down of traditional disciplinary boundaries, which historically had at least made
it possible to keep up with new results in one’s own area of specialty. The inten-
tionally broad nature of genome-scale assays means relevant prior knowledge
can arise from nearly any biomedical discipline, and it is becoming increas-
ingly common to discover important and unsuspected roles for genes previ-
ously characterized elsewhere. Relaxin (RLN1 , NCBI Entrez Gene GeneID: 6013
(www.ncbi.nlm.nih.gov/gene)), for example, was discovered in 1926 by Frederick
Hisaw (Hisaw, 1926) and characterized as a key birth-related cervical ripening
hormone in the 1950s (Graham and Dracy, 1953). More recently, relaxin has
been identified as having additional roles in processes as diverse as osteoarthritis
and heart failure (Kupari et al., 2005; Santora et al., 2007).

In summary, not only is there an overwhelming amount of knowledge
available, but more and more of it is relevant to each and every biomedical
scientist. The challenge facing biomedical researchers is no longer how to
produce high-quality, system-wide experimental data, but how to analyze it
in an efficient and thoughtful manner. The consequence of not being able to
take advantage of this wealth of biomedical knowledge is hugely costly in
terms of the wasted time, effort and money chasing weak leads, inadvertently
duplicating already published results and missing important discoveries. Being
a cross-disciplinary biomedical scientist is no longer a choice, but a necessity
in order to effectively interpret this data.

2.1.3 The challenges of finding and interacting
with biomedical knowledge

In biomedicine, knowledge completely surrounds us, permeating every
resource and data set available for interrogation. Valuable efforts to warehouse
biomedical information relevant to the interpretation of genome-scale data
in an easy to use, integrated form have produced indispensible international
multi-genome databases such as NCBI housed by the National Library of
Medicine (www.ncbi.nlm.nih.gov), Ensembl (www.ensembl.org, a collaborative
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Figure 2.1 The growth of PubMed, 1980–2009. The dotted line indicates
the number of new articles indexed in PubMed each year, while the solid
line indicates the total number of articles indexed in PubMed at the end
of each year. Data compiled from MEDLINE Citation Counts freely avail-
able at www.nlm.nih.gov/bsd/medline_cit_counts_yr_pub.html (accessed Novem-
ber 2009).

project between the European Bioinformatics Institute (EBI), and the Wellcome
Trust Sanger Institute), and the University of California, Santa Cruz (UCSC)
Genome Bioinformatics portal (http://genome.ucsc.edu), in addition to the
various model organism databases such as MGI (www.informatics.jax.org)
developed by The Jackson Laboratory, ZFIN at the University of Oregon
(http://zfin.org) and WormBase International Consortium (www.wormbase.org).

Although essential to the modern biomedical scientist navigating genome-
scale data, focusing only on the simple warehousing of biomedical data
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currently fails to adequately support knowledge-driven investigation for a
number of reasons. Firstly, while undoubtedly wide ranging, the terabytes of
data in these databases are inherently incomplete. Knowledge described in
unstructured form (such as the natural language used in literature) or implied
through inference is exceptionally difficult to capture, and so tends to be
neglected. Secondly, the effective presentation of these large collections of data
is arguably just as important as their assembly, and perhaps as difficult. These
challenges are explored further in the sections below.

2.2 Challenges in knowledge-driven approaches

2.2.1 We need to read; development of automatic methods
to extract data housed in the biomedical literature

While scientific methods, techniques and data sets have evolved, the publica-
tion of results, findings and hypotheses in peer-reviewed journals has remained
the pre-eminent method of scientific discourse. PubMed continues to grow at
the terrifying rate of 1.5 publications per minute (calculated from PubMed 2008
indexed entries, accessed October 2009), ensuring that the biomedical literature
continues to be the richest source of available biomedical knowledge. How-
ever, Herbert Samuel’s description of a library as ‘thought in cold storage’ (Hull
et al., 2008), conjuring images of a resource waiting, lying dormant until such
time as it can truly be fully exploited, seems particularly apt when considering the
knowledge captured by PubMed, and our current inability to thoroughly utilize it.

Recognizing the importance of the knowledge trapped within the biomedi-
cal literature, diligent groups of human experts manually curate key aspects of
the biomedical literature and formally represent these assertions in databases,
with pointers back to those documents that provided evidence for the assertion.
For example, the mouse gene, caveolin 3 (Cav3 , GeneID: 12391) is anno-
tated with the term ‘endocytosis’ (Gene Ontology term identifier, GO:0006897
(http://amigo.geneontology.org)). This annotation was created due to the presence
of a ‘traceable author statement’ in a publication, and so there is a hyperlink
directly to the publication, via its PubMed ID (PMID: 10373486, (Das et al.,
1999)) from within the gene record. Manually identifying key features in text
in a systematic and consistent manner is not an easy task, challenging even for
trained annotators, and has spawned a myriad of metrics to assess the quality of
manual annotations (Bada and Hunter, 2009; Artstein and Poesio, 2008).

Automatically parsing specific meaning and key terms from unstructured
text is also incredibly difficult; in particular due to the ambiguous nature of
terms and phrases frequently used in the natural written language of journal
articles. For example, if you were searching the biomedical literature for gene
products involved in ethanol synthesis, the synonyms (words of similar or iden-
tical meaning) of both ‘synthesis’ (e.g., biosynthesis, formation, anabolism) and
of ‘ethanol’ (e.g., ethyl alcohol, hydroxyethane) would need to be considered
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to ensure a comprehensive search. Ambiguities, which although understood by
humans, are difficult for computational systems to disambiguate, must be resolved
(for example, alcohol may refer to ethanol or the more generic class of alcohols
of which ethanol is one member), and a variety of lexical forms (e.g., anabolism
of ethanol, ethyl alcohol is formed, synthesizes hydroxyethane) which can also
include interspersed text (e.g., anabolism of a large amount of ethanol, ethyl
and propyl alcohol are formed) all must be understood. When ambiguities are
not resolved it becomes very difficult for computers to effectively identify and
rationalize key pieces of information.

In an attempt to provide consistent descriptions of biomedical terms,
relationships and entities, the biomedical community has turned to structured,
controlled vocabularies, called ontologies . An ontology is a formal represen-
tation of a set of entities within a given domain, which specifies how such
entities are related to each other within a hierarchy. There are many biomedical
ontologies (www.obofoundry.org), but the most comprehensive is the Gene
Ontology (GO), consisting of more than 28 000 terms and 5 relations (Ashburner
et al., 2000; www.geneontology.org). The GO comprises three separate
ontologies that describe gene products in terms of their biological process,
molecular function and the cellular components in which they reside. The terms
and relationships within the GO are determined by community consensus and
very carefully defined. Such precise and restricted definitions, that everyone in
the community agrees on, enables uniform queries across different information
sources, while the hierarchal structure allows queries to be undertaken at
different levels. For example, one can use the GO to identify all the gene
products in the human genome involved in transferase activity, or you can
zoom in to all the protein serine kinases, or specify further only those products
involved in transforming growth factor beta receptor activity (Figure 2.2). This
structure also allows annotators to assign properties to genes or gene products
at different levels, depending on the depth of knowledge about that entity.

Critically, the GO provides a controlled and structured vocabulary for describ-
ing genes and proteins that both humans and computers can understand, and
therefore use when trying to describe and capture information from within
the biomedical world. Recognizing this, there has been massive investment in
biomedical ontologies; in the last six years alone, the US National Institutes
of Health (NIH) has invested more than $52 million to support ontology
development and use, including the Gene Ontology Consortium and the National
Center for Biomedical Ontology (Leach et al., 2009).

Yet, even with this large investment in ontological development and on-going
human curation and annotation efforts, the biomedical community is still unable
to keep pace with the tremendous rate at which knowledge is being published.
Recent analysis showed that current manual curation rates will not be suffi-
cient for the completion of all annotations, and even with the most optimistic of
assumptions, decades will pass before annotations approach completion (Baum-
gartner et al., 2007). Manual curation by humans is quite rightly highly regarded,
producing highly accurate annotations essential for understanding the complexity
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of life. But it is expensive in terms of both time and money, and calls for
researchers to voluntarily contribute to annotation efforts have been unsuccessful
(Seringhaus and Gerstein, 2007). It is therefore critical to explore and invest in
the development and use of automated methods able to effectively deal with, and
extract information from, large amounts of text written in natural language that
would otherwise be lost by human curation efforts.

The peer-reviewed literature is the ultimate repository of biomedical
knowledge, and much of that knowledge has not been converted into structured,
database form. Computational applications that process natural language (i.e.,
what people say or write for other people) have been developed to try to exploit
the literature directly. One simple, yet surprisingly effective method is gene
co-occurrence. The systematic overlap of publications that mention two genes
can be used as evidence of some relationship between them and lead to the
identification of involvement in common functions and processes (Schlitt et al.,
2003). To more comprehensively capture and extract the knowledge trapped
within biomedical literature, more sophisticated methods are required, and
two broad classes of approaches have been reviewed in depth in Cohen and
Hunter (2004). Rule- or pattern-based approaches use background knowledge
in the form of dictionaries, thesauri or ontologies, to create methods capable
of distinguishing between different possible meanings in text. However, the
development of such rules is largely undertaken by hand, which can be
prohibitively labor intensive, and performance can be poor (Hunter and Cohen,
2006). Statistical techniques such as support vector machines have also been
applied to biomedical text and generally are built by constructing models of
the kinds of words that surround text of interest (Lee et al., 2004). Statistical
methods require large amounts of manually annotated text for training data,
which is also challenging to create (Hunter and Cohen, 2006). Nevertheless, both
sorts of natural language processing systems have had successes in identifying
and extracting factual information from texts, in facilitating the retrieval of texts
relevant to a particular query, and in creating summaries of large document
collections. The broad field of application of natural language processing (NLP)
techniques is sometimes called ‘biomedical text mining.’

Since the general task of natural language processing is so challenging,
researchers have focused in on very specific applications that are expected to
be most useful. The same challenges in manually annotating texts for developing
systems also make it difficult to fairly evaluate them. As slight differences in the
definition of a ‘useful task’ and in the way the manual annotation is done can
lead to significant differences in results, the biomedical text mining community
has created a series of competitive evaluations to ensure that the results from
different groups are comparable, and to track progress over time. For informa-
tion retrieval (that is, finding documents with information relevant to a specific
query), the TREC (Text REtrieval conference) Genomics Track, a yearly com-
petition from 2003 to 2007, supported by the National Institute of Standards
and Technology, was perhaps the most influential. The BioCreative competition
(Critical Assessment of Information Extraction in Biology) has been held three
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times (2004, 2006 and 2009) and is focused on extraction of the information
that could be entered into databases, with tasks oriented around identification of
specific genes and evidence of protein–protein interactions. The broad computa-
tional linguistics community has also taken an interest in biomedical applications,
with one of the 2009 North American Association for Computational Linguistics
shared tasks focused on extraction of information about events (such as transport
or phosphorylation) from the biomedical literature.

2.2.2 Implicit and implied knowledge;
the forgotten data source

In addition to the wealth of biomedical knowledge explicitly stated in publica-
tions and databases, a significant amount is also hidden from view. Knowledge
that is well known throughout a community is often viewed as so fundamen-
tal it no longer needs to be reiterated as it ‘goes without saying’. For example,
when a scientist reports the up-regulation of a protein in discussion of an mRNA
microarray study, he or she assumes the reader knows that although the exper-
iment measured mRNA levels, mRNA is being used as a proxy for protein
levels (DNA makes RNA makes protein is the central dogma of biology (Alberts
et al., 2008)). So the results are discussed in terms of proteins, without the
author ever mentioning the mRNA–protein relationship, as they assume it to
be so obvious, that it ‘goes without saying.’ Another example may involve the
use of domain specific terms; researchers investigating the molecular mecha-
nisms underlying facial clefting may be equally as interested in mouse mod-
els of micrognathia (mammalian phenotype ontology accession MP:0002639,
(www.informatics.jax.org/searches/MP_form.shtml)), as those displaying abnor-
mal mandibular morphology (MP:0000458) or cleft chin (MP:0000114). All three
phenotypes describe abnormalities of the lower jaw. The mandible being the
anatomical name for lower jaw, the chin being the common name for the region
where the mandible fuses, while micrognathia is a medical term for describing an
abnormally small jaw which tends to affect the mandible more frequently than the
maxilla (upper jaw). It is reasonable to assume that craniofacial researchers are
aware that mandible is another name for lower jaw, and that they are also familiar
with medical terms used to describe common craniofacial abnormalities. Given
these assumptions, when discussing or reporting these phenotypes, craniofacial
researchers neglect to spell out the relationships between these phenotypes as they
assume the knowledge that all three involve the mandible ‘goes without saying.’

While this sort of shorthand is ubiquitous in human communication, it
assumes that those who read publications or use knowledge have the same
understanding or background as the author. Genome-wide technology has
broken down disciplinary boundaries to such an extent that this is now a rather
blinkered assumption, while this lack of boundaries also makes computational
tasks much harder. The results of high-throughput experiments often include
genes and proteins that the investigating biologist has never heard of, but that
have been extensively studied in a different discipline in which they have no
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expertise. It is no longer reasonable to assume that all readers bring with them
the same complement of background knowledge, so the challenge becomes to
identify this high-level, so-called ‘goes without saying’ type of knowledge and
ensure that it too is captured and represented in a way which can be used to
help explore and interpret large ‘interesting’ gene lists.

A second and almost infinite untapped vein of knowledge is tied up in the
process of thought, and is very challenging to capture. As molecular biologists
analyze and think about a collection of information they make inferences about,
for example, the function of a molecule, based on many different factors such
as homology to other molecules, molecule interactions, expression patterns, and
knockout phenotypes. Inference can come from shared physical characteristics;
for example, if a novel protein is found to contain a EF-hand domain (InterPro
identifier IPR002048, (www.ebi.ac.uk/interpro)), it is possible to infer that the
protein has calcium binding ability, as a large number of proteins known to
bind calcium do so via EF-hand domains. Or inference can be based on shared
behavior; for example, if a collection of genes known to have a role in cell death
display decreased expression in cancer tissues, it may be prudent to infer that
genes of unknown function which also share the same expression pattern may
also be involved in cell death. Another example of inference is based on shared
outcome; for example, if two separate knockout mice generated by the ablation
of activity of two distinct genes result in a common phenotype, such as heart
hypoplasia (MP:0002740), it may be possible to infer that both genes are normally
involved in the proliferation of cells during heart development. The degree to
which any form of inference can be trusted can be highly variable. More weight,
or importance, may be placed on an inference based on the knowledge that two
genes are able to independently produce a rare phenotype, than on the knowledge
that both proteins reside in the same cellular location, such as the cytoplasm.

The ability to capture knowledge which is either so pervasive in a community
that it is deemed redundant and unnecessary to communicate, or which is inferred
through shared attributes, behaviors or semantics, could potentially increase the
depth and variety of knowledge available to researchers attempting to analyze
complex data through computational tools supporting their analysis.

2.2.3 Humans are visual beings: so should
their knowledge be

Once this enormous amount of knowledge has been gathered, the final but no
less important consideration is how to present it to the investigating scientist.
After all, a collection of hundreds of comprehensive gene summaries is no easier
to digest than hundreds of journal publications, and may also not provide any
clearer route to understanding a data set.

Humans are blessed with an innate ability to process large amounts of
information visually. We are able to rapidly discern and identify patterns in
data relatively easily when they are presented in visual form, but can struggle
when the same information is presented to us in a more textual (or numerical)
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manner (Tao et al., 2005). It is therefore unsurprising that visual representations
of complicated biomedical data and results permeate almost every facet of
biology. Molecular biologists, for example, are adept at looking at information
in visual form; electrophoresis gels (visual representation of size), expression
data as heatmaps (visualization of intensity), in situ hybridizations (identification
of locations of functional interest), sketches of pathways and protein complexes
(illustrative example of complex spatial and temporal process), and genome
browsers (simplified and dynamic representation of dense and varied information
organized spatially) are just some examples of how they routinely interact with
information in a visual manner.

Currently, however, many representations of biological information are lim-
ited by either the type of data they depict (e.g., heatmaps and gels display
numerical range) or by the lack of personalization and manipulation afforded to
them during data display (e.g., KEGG is a collection of static pathway images,
resistant to user manipulation). The many disparate types of knowledge which
a biomedical researcher consults in order to undertake a comprehensive analysis
of his or her genome-scale data posses a particularly challenging visualization
problem. Not only is the breadth of the data wide (genome wide, encompassing
all possible genes and all possible relationships between them), but it is also
deep (large amounts of knowledge available for each gene or protein, and their
relationships) and varied in both knowledge type (images, text, numerical data)
and knowledge captured (interaction, structural, phenotype, and expression data
to name a few).

Exploiting human visual ability should make it possible to present highly
complex data, many orders of magnitude greater than would be possible with
alphanumeric characters alone. The sheer volume and intricacy of data and infor-
mation within the biomedical domain demands sophisticated visualization efforts
if knowledge is to be made available in a systematic and intuitive manner. To
date, the focus has remained on how to produce this data, with limited advances
in leveraging creative visualizations to encourage and support insightful investi-
gation of complicated biomedical data.

2.3 Current knowledge-based bioinformatics tools

As outlined above, finding ways to coherently gather, intelligently integrate and
logically present biomedical knowledge of all data types, across many biomolec-
ular entities, is a challenge, but one that is imperative to address. The output
or results from high-throughput or genome-wide biomedical analyses are typ-
ically ranked lists of entities devoid of structure and lacking in context. A
GWAS may produce a list of genes containing single nucleotide polymorphisms
(SNPs) ranked by p-values dependent on their genetic association with a phe-
notype of interest. A microarray data set may yield a list of genes differentially
expressed between two biomedical states ordered by statistical significance. In
such instances it is not clear how (or even if) these genes and their protein
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products are related to each other, the biomedical scenario under study, or even
what their ‘normal’ function may be.

Bioinformatics groups across the world are actively working to tackle this
problem and a number of knowledge-based tools are freely available to assist
in the analysis and interpretation of high-throughput results. The input for these
tools is a set of genes or proteins identified as being of interest based on some
high-throughput experiment, and typically the investigating bioscientist wants
to understand how these genes and proteins are implicated in the biomedical
scenario they are studying. Specifically, what are they doing, and how and with
whom are they doing it? For example, if a collection of 400 genes and proteins has
been identified as significantly differentially expressed during pancreatic devel-
opment, questions to be addressed may include what are these genes doing during
the formation of the pancreas, how do they interact with each other, what are the
specific functions they undertake and how do they perform them?

2.3.1 Enrichment tools

Annotation enrichment is a strategy used by a number of bioinformatics tools
to systematically map a large number of genes to their associated biological
annotations and then statistically determine the most over-represented (enriched)
biological annotation out of the hundreds of terms associated with the genes of
interest (Huang da et al., 2009). The result being the identification of a term (or
terms) which describes some biological process or behavior common among a
group of genes of interest, which also occurs more frequently in this group than
expected by chance.

GO term enrichment analysis has become the default secondary analysis
undertaken on any group of genes identified through high-throughput genomic
methods, and there are a large number of tools that can be used to undertake the
task (reviewed in Khatri and Draghici, 2005). Enrichment, as used during the
analysis of GO terms associated with genes or proteins, is the idea that a specific
term is present within a group of genes or proteins, at a frequency much higher
(or lower) than would have been expected by chance. By comparing the distribu-
tion of terms within a gene set of interest to the background distribution of these
terms (for example, across all genes represented on a microarray chip, or all pro-
teins in a specific proteome), it is possible to identify terms which are under- or
over-represented within a set of interest, and thus infer that these terms indicate
an underlying biological function or process. For example, if 10% of the genes
on the ‘interesting’ list are kinases, compared to 1% of the genes in the human
genome (the population background) being kinases, by using common statistical
methods (such as χ2, Fisher’s exact test, binomial probability or hypergeometric
distribution), it is possible to determine that kinases are enriched in the gene list
and therefore have important functions in the biological study undertaken (Huang
da et al., 2009). This type of enrichment analysis, the identification of functional
classifications based on GO annotations attributed to the genes of interest, can
help the development of explanations for the biological phenomena under study
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by moving the analysis of biological function from the level of single genes to
the level of biological process (reviewed in Khatri and Draghici, 2005).

A drawback to this type of analysis is that only one knowledge or annotation
source is utilized at a time, and in the case of the GO, this annotation source has
some limitations. The GO is still a work in progress (Baumgartner et al., 2007); its
annotations remain incomplete and biased towards well-studied genes (Alterovitz
et al., 2007). In addition, the hierarchical structure of the GO results in many
annotations that are very similar, but treated independently by enrichment meth-
ods, making it difficult to identify enrichment between different, but semantically
similar terms (Khatri and Draghici, 2005). Many additional types of information
or attributes can be used during enrichment analysis, such as membership to path-
ways, implication with disease or phenotype, and positional information such as
chromosomal location. By considering many types of annotation data in con-
cert, this type of secondary analysis can be more effective. Increased coverage
increases analytical power when interpreting gene or protein lists.

The Database for Annotation, Visualization and Integrated Discovery
(DAVID; Huang da et al., 2009; http://david.abcc.ncifcrf.gov) developed by
the Laboratory of Immunopathogenesis and Bioinformatics (LIB), NIH, does
exactly that. DAVID classifies genes or proteins based on the co-occurrence
of their annotation terms; however, it has progressed from using annotations
from a single data source (for example GO terms), to flexibly integrating
annotation terms from over 40 sources (including protein–protein interactions
(PPIs), protein functional domains (e.g., InterPro), disease associations (e.g.,
OMIM), pathways (e.g., KEGG, BioCarta), sequence features, homology, tissue
expression patterns and literature) for use during functional annotation enrich-
ment. DAVID also undertakes functional annotation clustering. By measuring
the relationship between annotation terms, DAVID is able to group similar,
redundant and homogeneous annotation contents from the same or different
resources into annotation groups. This reduces the burden of associating similar
redundant terms, making biological interpretation more focused on a group level.
DAVID also has intuitive visualizations that aid identification and investigation
of the many-genes-to-many-terms associations reported, further supporting
comprehensive understanding of how genes are associated with each other and
their functional annotations. DAVID’s ability to condense large gene lists into
biologically meaningful modules greatly improves the ‘ability to assimilate large
amounts of information and thus switches functional annotation analysis from
gene-centric to a biological module-centric analysis’(Khatri and Draghici, 2005).

The strategies outlined so far take a simple gene list as input, ignoring the
qualitative information available in the data. The Gene Set Enrichment Anal-
ysis (GSEA) (Subramanian et al., 2005; www.broadinstitute.org/gsea) method
housed and developed by the Broad Institute, Cambridge, MA, USA, utilizes
both prior biological knowledge and gene expression data. The expression data
analyzed by GSEA is typically generated from samples belonging to two pheno-
typic classes (for example, tumor vs. normal or treated vs. untreated state), and
the genes assayed are ranked based on their differential expression between these
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two classes. As the name implies, GSEA evaluates microarray data at the level
of gene sets, which are defined on the basis of shared biological functions (e.g., a
common GO category or biochemical pathway), physical position (e.g., chromo-
somal location), regulation (e.g., co-expression), or any other attribute for which
prior knowledge is available. GSEA then determines if those genes in the gene
set are randomly distributed throughout the larger ranked gene list (and therefore
not significantly associated with either phenotypic class), or if they tend to be
over-represented towards either the top or bottom of the larger ranked gene list,
indicating an association between the gene set and the phenotypic classes under
study (Figure 2.3). A phenotype-based permutation test is also used to determine
the statistical significance of any enrichment, corrected to account for multiple
hypothesis testing.

Focusing on sets of genes that share biologically important attributes can
support the discovery of a biological function that may otherwise have been
missed. For example, a small expression change in a single gene may seem
inconsequential, but small increases in activity across all genes in a pathway can
dramatically alter the flux of this pathway (Subramanian et al., 2005). Combining
expression data with a priori background knowledge allows the investigating
scientist to identify unifying themes across data that give the results context.

All of these approaches, while helpful in discovering and understanding a
biological theme common to a collection of genes or proteins, essentially produce
a ‘bag of genes’ related by a common term. While useful, in itself this sheds little
light on how the genes or proteins actually relate to each other or function together
within a system. To fully understand a protein’s function requires knowledge of
all those entities with which it has an association (Jensen et al., 2009).

2.3.2 Integration and expansion: from gene lists to networks

Life is a balanced process, in which genes, their products and various
biomolecules work together in complex interacting groups and networks to cre-
ate functioning systems. It is intuitive therefore to want to represent lists of genes
or proteins as networks which more accurately represent the dynamic functional
associations that exist between them in vitro. In lower, easily mutable organisms
this is already a reality. In Saccaromyces cerevisiae (baker’s yeast) PPI networks
have been painstakingly constructed from systematic, genome-wide mutation
experiments (Miller et al., 2005; Uetz et al., 2000). As of writing, the Database of
Interacting Proteins (DIP; Salwinski et al., 2004; http://dip.doe-mbi.ucla.edu/dip)
contains records regarding 18 440 interactions amongst 4943 yeast proteins,
derived from 23 034 experiments, likely a close-to-complete inventory. This is
undoubtedly a valuable resource. Should a molecular biologist have a list of
interesting proteins from a yeast experiment, they can instantly determine not
only if these are implicated in a common process or pathway (using enrichment
methods) but also exactly how each of the proteins interacts with each other,
and additional proteins in the proteome. When considering experimentally
validated PPIs from higher eukaryotes, however, the story is quite different.
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Figure 2.3 GSEA results: enrichment plot. The top section of the plot shows the
running enrichment score (ES) as GSEA walks down the ranked gene list. The
score at the peak of the plot (circled) is the ES for the gene set. A positive ES,
as illustrated here, indicates enrichment at the top of the ranked gene list. The
middle section of the plot shows where genes in the gene set appear with respect
to the ranked list. The leading edge subset contains those genes which contribute
most to the ES. The bottom third of the graph indicates the correlation between
a gene in the ranked list and the observed phenotype. A positive value indicates
a correlation with the first phenotype. Image produced by analyzing the p53 data
set using the C2 (v2.5) functional human gene set as described in Subramanian
et al., 2005, and illustrates enrichment in genes involved in the HSP27 pathway
in NCI-60 cancer cell lines with normal vs. mutated p53. Figure produced by
H. Kuehn at the Broad Institute of MIT and Harvard.
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Currently, only 683 curated interactions between 502 mouse proteins from 917
experiments reside in the DIP database; assuming there to be approximately
25 000 genes in the mouse genome, this covers less than 2% of the corresponding
proteome and likely less than 1% of the true PPIs in this species.

So while experimentally validated, high-coverage PPI networks are the gold
standard, the ‘answer’ that can lay bare how genes and their protein products
behave and interact to produce biological function, they are still a distant reality
for the majority of biomedically important species, ourselves included.

2.3.3 Expanding the concept of an interaction

Considering just explicit physical interactions between genes or proteins not
only frequently results in very sparse interaction networks (particularly in higher
eukaryotes such as mouse and humans), but also utilizes a tiny fraction of all
available knowledge associated with any gene or protein of interest.

While explicit or direct associations (such as PPIs) capture physical relation-
ships between genes and proteins that can be experimentally measured in some
way, attributes and annotations from gene- and protein-centric databases can also
be used imply relationships between genes and proteins. From a functional per-
spective, an ‘association’ (as opposed to an interaction) can mean not only a
direct physical binding between two proteins, but also a more indirect interac-
tion, such as participation in the same metabolic pathway or cellular process (von
Mering et al., 2005). These implicit or indirect associations occur when genes or
proteins share a particular attribute, suggesting a possible common biomedical
function. They are also examples of some of the more simple inferences made by
biomedical scientists when reviewing their data and associated knowledge (see
Section 2.2.2 for detailed examples).

Homology can also be used to infer relationships between pairs of genes or
proteins. Experimentally validated PPIs in one species can be used to predict
interactions in other species using orthology. Othologs are genes in different
species that are similar because they share a common ancestral gene; they were
separated by a speciation event. A pair of interacting orthologs are known as
interologs (Walhout et al., 2000), and the presence of a pair of interologs in
a reference species is used to predict the presence of an interaction in the test
species. The success of this method is highly dependent on the accurate prediction
of orthology through the use of complex algorithms, rather than just sequence
similarity (O’Brien et al., 2005). Interolog mapping has become an established
method for predicating interactomes (Lehner and Fraser, 2004; Yu et al., 2004)
and has been successfully used to predict prokaryote PPI networks (Arabidop-
sis) from interacting orthologs in eukaryotes (yeast, worm, fruit fly and human;
Geisler-Lee et al., 2007).

By considering these implicit or indirect relationships between genes and their
products, it is possible to create a much richer network, exploit a much greater
proportion of the pre-existing biomedical knowledge, and also go some way
towards capturing the often neglected source of implied and inferred knowledge.
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STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) is
one of the next generation of integrated, multispecies databases which incor-
porate both direct and indirect protein–protein associations (Jensen et al., 2009;
http://string.embl.de). STRING aggregates, scores and weights data from four
types of sources: genomic context (conserved genomic neighborhood, gene fusion
events, co-occurrence of genes across genomes), high throughput experiments,
co-expression/conservation, and prior knowledge (gene name co-mentions in
PubMed abstracts). STRING behaves like a meta-database, mapping a wide
variety of interaction data onto a common set of genomes and proteins, with
its ultimate aim being to represent the union of all possible protein–protein asso-
ciations (Jensen et al., 2009). An interactive and dynamic interface presents and
encourages the exploration of the evidence supporting each association, and also
aids the comprehensive investigation of a group of interesting proteins and their
associations with other biological entities (Figure 2.4).

Figure 2.4 STRING integrated network – as produced by STRING 8.2 when
searching for interactions involving the human WNT7A precursor. Interactions
with 10 additional biomolecules are identified, with the number of arcs between
any pair of entities indicating the different types of evidence supporting each inter-
action. Image produced by STRING 8.2, searching for Homo sapiens WNT7A with
default parameters, accessed November 2009 (http://string.embl.de; Jensen et al.,
2009).
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2.3.4 A systematic failure to support advanced
scientific reasoning

However, even when considering the most sophisticated of current bioinformatics
tools, a disconnect remains between the support required by bioscientists to fully
exploit their data sets, and the support these tools provide.

Scientists of any discipline, when conducting discovery-driven investiga-
tions, progressively and recursively apply three types of reasoning: classifica-
tion, model-based, and narrative (Neressian, 2002). In the context of molecular
biology, current bioinformatics tools excel in identifying surface-level insights
associated with classification reasoning (for example classifying and identifying
multidimensional relationships of interest). But they fail to support those deep
causal insights essential for the development of novel and credible hypotheses,
which can only be achieved by supporting high-order model-based and narrative
reasoning activities (Mirel, 2009). Model-based reasoning requires the investi-
gating scientist to interpret the data presented to them and engage in inference
(for example in order to explain how and why a biological event may influence
a particular disease mechanism), while narrative reasoning builds on, and refers
to, both classification and mental modeling to create and develop stories which
aid understanding of causal relationships (Mirel, 2009; Latour, 1999; Table 2.1).
For scientists to progress from lists of genes and proteins, to novel hypotheses
in which they are confident enough to invest their scarce research time and dol-
lars, just delivering data is not good enough. To simulate hypothesis generation,
bioinformatics tools must integrate and comprehensively support all three types
of reasoning (Mirel, 2009).

2.4 3R systems: reading, reasoning and reporting
the way towards biomedical discovery

Promising advances in tackling this complex challenge have recently been
reported. Taking its name from the three broad classes of algorithms it utilizes
(reading, reasoning and reporting), 3R systems focus specifically on assisting
biologists to develop deep explanations for the biological phenomena they
observe in their genome-scale data (Leach et al., 2009). Introduced as a new
approach to the exploration of high-throughput data capable of accelerating
biomedical discovery, 3R systems integrate data from gene- and protein-centric
databases and biomedical language (‘reading’), with symbolic and quantitative
network inference techniques (‘reasoning’) and visual approaches for presenting
and dynamically exploring complex networks of information (‘reporting’).
In combination, this also addresses some of the difficulties associated with
supporting the more complex forms of reasoning (model- and narrative-based)
undertaken by scientists when carrying out discovery-based investigations.
Significantly, the 3R approach focuses on the comparison and combination of
two weighted networks. The ‘knowledge network’ is a representation of a large
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Table 2.1 The stages of analysis and reasoning undertaken by scientists during
discovery-driven investigation. Inspired by Table 1 of Mirel (2009).

Type of reasoning Example question Task description Example task

Confirmation
(validation)

Do I trust this
tool?
Do I trust its
content?

Vetting the query
results and the
tool for
accuracy,
reliability, and
timeliness

Search for
familiar
literature
references

Classification and
validation

Tell me what you
know? Show
me how my
data fits into
pre-existing
categories, e.g.,
into a KEGG
pathway

Classify
relationships to
find genes and
protein
interactions of
interest

Find an
association
between a
candidate gene
from
experimental
findings and a
protein
associated with
a disease

Model-based
reasoning and
validation

Why is this of
interest to me?
How does this
relate to my
work?

Place relationships
of interest in
context to
mentally model
explanatory
biological
events relevant
to disease

Contextualize
significant
regulatory
relationships in
pathways

Narrative
reasoning and
validation

How does this fit
with my work?
Does it explain
something I
have observed?
How does this
data come
together to tell
a biological
story? Is this a
testable
hypothesis?

Turning
explanations
about biological
events into
new, credible
and plausible
biological
stories

No studied tasks
exist, as
observed
scientists failed
to achieve this
level of
reasoning using
currently
available
bioinformatics
tools
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proportion of all available biomedical knowledge pertaining to genes, their protein
products and their interactions. The ‘data network’ describes a particular high-
throughput experimental data set (Leach et al., 2009). In both graphs, biological
entities that can be clearly and unambiguously defined are used as nodes, and arcs
or lines between two nodes indicate some kind of association or relationship. The
combination and display of both these graphs enables not only the exploration
of existing knowledge in the context of a particular biological phenomenon, but
also the development of novel and credible hypotheses.

2.4.1 3R knowledge networks populated
by reading and reasoning

To be comprehensive, the knowledge network is populated with information
‘read’ from both biomedical databases and the biomedical literature. The gene-
and protein-centric knowledge housed in biomedical databases comes in many
different forms, but in nearly all instances is tied to a unique gene or protein
identifier. The ability to unambiguously identify a gene or its protein products
across a number of disparate resources allows the collation of diverse knowledge
types, all relevant to a single gene or protein, in a single location. The 3R
knowledge network uses NCBI Entrez Gene GeneID and Taxonomy Identifiers
to disambiguate information extracted both at the gene and species level.

Explicit or direct associations (from experimentally validated PPIs), were
retrieved from iRefWeb (Razick et al., 2008), which itself integrates PPI
information from the BIND, BioGRID, IntAct, MINT, MPPI, and OPHID
databases. Because a single interaction between two proteins may be reported
multiple times in different publications using different experimental methods,
the 3R system uses PubMed identifiers and the Molecular Interaction Ontology
(http://psidev.sourceforge.net/mi/rel25/data/psi-mi25.obo) to determine when
PPIs are genuinely novel and when they are redundant. This is important
because a bioscientist assessing PPI data between two proteins of interest may,
for example, view multiple assertions of an interaction by a high-throughput
method (such as yeast two hybrid) in two publications differently from an
interaction which has been demonstrated using three different experimental
methods, also reported by two independent publications. The provenance of
these interactions and how they are reported is critical for a bioscientist to
determine how much weight he or she wants to give a set of evidence. By
capturing and displaying provenance data, such as the different data sources
and biological methods used in determining a physical interaction, scientists are
able to assess for themselves which information they wish to trust, and just how
much they trust it. Additional explicit protein–DNA interactions were extracted
from the TRANSFAC 10.2 (Wingender et al., 1996) and PReMod (Ferretti
et al., 2007; http://genomequebec.mcgill.ca/PReMod) databases.

3R systems also ‘read’ the biomedical literature, and a simple but effec-
tive modification of co-occurrence, called the ‘asymmetric co-occurrence frac-
tion’ (ACF) measure (Gabow et al., 2008), was used to identify relationships
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between genes and/or proteins from Medline abstracts (Leach et al., 2009). The
pattern-based OpenDMAP system (Hunter et al., 2008) is also being implemented
to extract a wider variety of knowledge from abstracts (such as protein transporta-
tion events, PPIs, and expression locations). OpenDMAP is a general framework
for recognizing instances of ontology terms and relationships among them in
biomedical texts. It is dependent on sets of patterns specific to each ontology
term and relationships among them in order to function. OpenDMAP has pre-
viously demonstrated its utility in extracting biologically important information
during the 2006 BioCreative II evaluation by achieving the best accuracy at the
protein interaction pairs subtask, which involved correctly identifying both of the
interacting proteins and mapping them to database identifiers (Krallinger et al.,
2007). OpenDMAP is the first system developed to exploit community-consensus
ontologies (e.g., the GO) as the central organizing principle of an information
extraction system, and this has been credited for much of its observed success.

Additional arcs or edges can be added to the knowledge network based on
simple inference. An arc was added if two genes were both annotated to the same
metabolic pathway (Kanehisa et al., 2006), the same Gene Ontology term (divided
into molecular function, biological process and cellular component hierarchies),
the same knockout phenotype, or shared at least one protein domain assignment.
Currently, 13 different knowledge sources are used to infer associations between
genes or proteins (including GAD, the GO, ChEBI, InterPro, KEGG, Reactome,
and the MGI Phenotype database). For the knowledge resources that involve
a nested hierarchy (such as the Gene Ontology), terms are merged when the
information content score by the Jiang measure between them exceeds 19.0 (Lord
et al., 2003).

2.4.2 Implied association results in uncertainty

The resultant 3R knowledge network incorporates many different types of infor-
mation from a variety of knowledge sources. However, not all associations
asserted are equal. While the inclusion of implicit or inferred interactions drasti-
cally increases the number of interactions asserted and proportion of the proteome
covered, it also contributes a large number of false positives due to computa-
tional predictions, experimental noise and the intentionally noisy nature of these
inferred associations. For example, it is unlikely that all cytoplasmic proteins
actually interact with each other as the GO cellular component knowledge source
implies, but this co-localization information is useful when assessing a relation-
ship if considered in conjunction with information obtained from other knowledge
sources (Leach et al., 2009). For this expanded coverage to be useful, there must
be a way to assess the quality of the associations asserted.

While experimentally validated interactions between a pair of proteins can
be seen as the gold standard of interaction data, meaningful assessment of the
quality and reliability of associations asserted by other knowledge sources is
challenging. When a large collection of interactions, asserted by a wide range of
different knowledge sources, is available, a gold standard data set of validated
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interactions can be created and used to empirically assess the reliability of each
interaction asserted by a given knowledge source. In well-studied organisms such
as yeast, where the majority of interactions between genes and proteins have been
validated, holding a subset of these interactions (or even all assertions from a
particular knowledge source) as a gold standard set is a reasonable practice that
enables the estimation of error rates for each knowledge source. In organisms such
as human and mouse, however, there are already too few knowledge sources to
justify withholding one as the gold standard. The inclusion of indirect associations
between proteins or genes further compounds the issue by making it difficult to
even determine which knowledge source would be an appropriate gold standard
(Leach et al., 2009).

The consensus reliability estimate (Leach et al., 2007) does not require the
designation of an explicit gold standard, and so was used to assign a reliabil-
ity score to each knowledge source within the 3R system. Knowledge sources
that explicitly name both genes and/or proteins (such as PPIs from iRefWeb,
protein–DNA interactions from TRANSFAC and PReMod, and entities identi-
fied from the literature using the ACF) were used for the reliability calculation.
The consensus estimate gives a higher reliability to a knowledge source if many
other knowledge sources agree with its assertions on average (Leach et al., 2007).
All associations asserted by a given knowledge source are given the consensus
reliability of that particular knowledge source.

It is entirely possible, and in fact common and desirable, to extract multiple
assertions of a relationship between a pair of genes or proteins (and so multiple
arcs) from different knowledge sources. In such instances, a summary arc with
a higher reliability was generated using the ‘noisy OR’ function P = 1 − �i

(1 − ri), where ri is the reliability of knowledge source i (which can be scaled
if necessary into the range 0 to 1 if probability is preferred; von Mering et al.,
2005; Li et al., 2006; Sun et al., 2007). Finally, in addition to calculating the
overall reliability of each assertion from each knowledge source, 3R systems
track the provenance of the sources of information used to generate the arcs in
the knowledge network, for later display and exploration.

2.4.3 Reporting: using 3R knowledge networks
to tell biological stories

Ultimately, the aim of 3R systems is to bring all this captured knowledge to bear
on analyzing high-throughput experimental results, to explore large and complex
data sets in light of all prior knowledge and to aid hypothesis generation. To tell
a story, or develop a hypothesis, context is required, and so the identification
of sub-networks containing just that knowledge pertinent to the investigating
scientist is critical. The many protein complexes, interactions and functional
pathways present within any biological system are all context-dependent, often
transient occurrences dependent on particular temporal and spatial environments.
No matter what the current state of the knowledge, at any given time only a subset
will apply to the particular biological scenario under investigation and the rest
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may be considered noise. Using the results of the high-throughput experiment
under study is therefore an intuitive way to achieve the context required for
explanation development.

A simplistic approach to utilizing these experimental results is to visualize
a subsection of the knowledge network that only includes nodes correspond-
ing to those genes or proteins identified as ‘interesting.’ Such sub-networks,
including the knowledge associated with the nodes and arcs, can then be visu-
alized and explored using Cytoscape (Shannon et al., 2003; Cline et al., 2007;
www.cytoscape.org/), an open source visualization tool. This approach has been
successfully used to identify functional explanations of a gene list by exploiting
inferences not present in any single knowledge source (Tipney et al., 2009a).

A more effective method of harnessing this experimental data, however, is
to create a second network from the experimental data and then combine both
the knowledge and experimental data networks in ways that support intuitive and
deep exploitation of the knowledge. In the application outlined below, genes were
identified as interesting if they displayed differential expression during a large
microarray study, then arcs were drawn between these genes of interest if they
also displayed correlated expression (above a given threshold). The numerical
weights on the arcs in this data network are the absolute correlation coefficients,
while the nodes represent the genes of interest. Conceptually, data networks can
be constructed from any high-throughput experimental data set of interest in
which an arc can indicate an experimental association (for example, in-house
protein or mRNA microarray studies, publically available data sets housed in
GEO, GWAS, or metagenomic studies). In the instance of correlated expression,
this indicates a possible functional relationship between the correlated genes; the
assumption being that genes with similar biological behaviors (i.e., correlated
expression) are likely involved in similar biological processes and functions.

Both the knowledge and experimental data networks have a common refer-
ence in the form of nodes representing genes or proteins, which supports the
combination of both networks. Currently, 3R systems have successfully applied
two different combination methods (Average and Hanisch Logit), and their utility
is described in the following section.

2.5 The Hanalyzer: a proof of 3R concept

The Hanalyzer is a recently published implementation of a 3R system, which
played a key role in understanding a craniofacial expression microarray time
series, and in generating hypotheses about the function of four genes previ-
ously unsuspected to have a role in facial muscle development in the formation
of the tongue (Leach et al., 2009). The Hanalyzer, including Cytoscape plug-
ins for visualization, is available as open source software via SourceForge at
http://hanalyzer.sourceforge.net.

In this application, the mouse transcriptome was sampled at 12-hour intervals
from E (embryonic day) 10.5 to 12.5, a period during development that begins
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with the formation of the facial prominences and ends when they fuse together
to form the mature facial platform. Samples from three distinct facial regions
(the frontonasal, maxillary, and mandibular prominences) were isolated at each
time-point, with seven independent biological replicates prepared and analyzed
for each sample. This data set and its initial analysis are described in detail in
Feng et al., 2009.

The knowledge network used in the Hanalyzer implementation was con-
structed (as described in Section 2.4.1) from nodes taken from a list of mouse
genes that were significantly differentially expressed in this craniofacial devel-
opment data set. The data network was also generated from this expression data
set. Expression levels for all replicates were averaged, and for each gene the
averages were normalized to the log2 ratio of the median expression level across
all time points and tissues. Nodes representing each gene were then linked with
arcs quantified by the Pearson correlation coefficient over time and tissue for all
pairs of genes.

To fully investigate this craniofacial data set, the arcs of the knowledge and
data networks were combined (since the nodes in both networks are mouse genes,
it is trivial to align the nodes) using two different methods. A number of different
methods for combining arcs in the data and knowledge networks are possible
and are explored in detail in Leach et al., 2009. However, since the goal when
combining the networks was to highlight concurrence, the ‘Average’ and ‘Hanisch
Logit’ methods were chosen due to their dependence on agreement between both
knowledge and data sources in order to achieve a high combined score.

The Average method requires simply taking the mean of the reliability of
the knowledge arc and the correlation coefficient in the corresponding data arc.
This method gives equal weight to the contribution of information from both the
background knowledge and the experimental data sources, providing scores that
are an indication of how well observations from the experimental data set are
supported by knowledge in the literature. The second method, a logistic com-
bination function (Sohler et al., 2004) which the authors named Hanisch Logit,
averages the logistic function of each arc in the knowledge and corresponding
data network. The distributions of scores in the Hanalyzer knowledge and data
networks (the data scores were distributed closer to 1 than the knowledge scores),
means that the Hanisch Logit metric tends to assert arcs with high scores in the
data, but with less contribution from the knowledge network (Leach et al., 2009).

To further prune each combined network, those arcs supported by less than
three knowledge sources were excluded, and only the top 1000 highest scoring
arcs from each combination metric were visualized in Cytoscape. In recognition
that scientists rapidly became ‘stymied when interface displays did not afford ade-
quate interactivity’ (Mirel, 2009), the Hanalyzer authors developed a number of
Cytoscape plug-ins (freely downloadable from Cytoscape’s plug-in menu) to aid
exploration of the combined networks. The plug-ins were designed specifically to
work with the unique collection of knowledge and data in these 3R networks, and
support its exploration through the easy and interactive exposure and manipula-
tion of information within the network (Tipney et al., 2009b; Leach et al., 2009).
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The CommonAttributes plug-in (Leach et al., 2009) enables the investigating
scientist to quickly explore network provenance, exposing not just the knowledge
sources supporting the assertion of an arc between two nodes (such as a common
GO term, and co-occurrence in the literature), but also the specific details of the
relationship. For example, that the term shared by two genes is GO:0006936
‘muscle contraction’ from the biological process GO, and that this GO term was
attributed to each protein from separate publications, with direct links to these
publications in PubMed; or in the instance of co-occurrence, the identification
and hyperlinking to the exact abstracts in which a pair of proteins co-occur. The
HiderSlider plug-in ‘slides’ over numerical values attributed to the arcs in the
combined network, allowing the investigating scientist to determine which rela-
tionships they are exposed to, using arc weights as a filter (Tipney et al., 2009b).
The plug-in improves the experience of interacting with these complex networks.
Being able to interact transparently with the network provenance dynamically
allowed scientists to determine how willing they were to trust different assertions,
as well as the network itself, while also providing access to detailed knowledge
in context, which supports the creation and development of novel hypotheses
(Mirel, 2009). Figure 2.5 outlines the full Hanalyzer system implementation.

The use of two different combination metrics allowed different reporting goals
to be addressed during visualization. Arcs asserted by the Average method are
strongly supported by both background knowledge and the experimental data,
and so identify those relationships that are already understood, providing rapid
orientation for the investigating bioscientist. Arcs asserted by the Hanisch Logit
method (and not the Average method) indicate relationships which are strongly
supported by the experimental data, but that have only modest support in the
background knowledge. These arcs indicate associations that may be novel and
unreported, and were used in this implementation to generate novel hypotheses.

By reviewing the combined 3R network, focusing on those arcs asserted
by the Average metric, a sub-network of 20 genes of interest connected by 50
arcs was identified. Through investigation of the knowledge shared across these
genes, it was observed that all 20 genes and their protein products were asso-
ciated in some way to ‘muscle’, and more specifically that the network was
involved in force generation and structural integrity of muscle. However, this
network was intriguing not only because of its strong muscle theme but because
the genes within this network displayed highly correlated expression with strik-
ing mandibular specificity (Figure 2.6). The expression of these 20 genes was
consistently and exclusively up-regulated in the mandibular sample as develop-
ment progresses from E10.5 to 12.5. Literature indicated that this expression
profile was consistent with tongue muscle development; the tongue being the
largest single muscle mass in the head and located within the mandible. At
approximately E11, the migration of myogenic cells into the tongue primordia is
complete, with myoblasts continuing to proliferate and differentiate until around
E15, when they fuse and withdraw from the cell cycle (Yamane et al., 2000).
The same 20 genes were also up-regulated at the later E12–12.5 time point in
the maxilla sample, consistent with the staggered onset of skeletal muscle cell
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Figure 2.5 Hanalyzer system diagram, describing the modules of the Hanalyzer.
Reading methods (rectangles) take external sources of knowledge (shapes on the
far left) and extract information from them, either by parsing structured data or
biomedical language processing to extract information from unstructured data.
Reading modules are responsible for tracking the provenance of all knowledge.
Reasoning methods (hexagons) enrich the knowledge that results from reading by,
for example, noting two genes that are annotated to the same ontology term or
database entry. All knowledge sources, read or reasoned, are assigned a reliabil-
ity score, and all are combined using that score into a knowledge network that
represents the integration of all sorts of relationships between a pair of genes and
a combined reliability score. A data network is created from experimental results
to be analyzed. The reporting modules (shapes in the bottom right) integrate the
data and knowledge networks, producing visualizations that can be queried with
the associated drill-down tool. (Adapted from Figure 1, Leach et al., 2009).

differentiation. The tongue matures approximately 1.5 days (in mice) earlier than
all other skeletal muscles, and this is thought to correlate with the tongue’s
requirement for mammalian suckling immediately after birth (Amano et al.,
2002). The lack of significant muscle in the frontonasal prominence accounts
for the low level of expression of these genes in that tissue.

Using the knowledge network to systematically report and explore the com-
plete collection of relevant background knowledge made the interpretation of
this complex set of evidence regarding the broad developmental function of a
complex group of interacting genes a much more straightforward task. Once the
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Figure 2.7 The Hanalyzer sub-network comprising of arcs asserted by both the
Average and the Hanisch Logit methods, and associated mRNA expression profile.
The graph illustrates the sub-network generated by viewing edges asserted by
both the Average and Hanisch Logit combinatorial metrics. Nodes are colored as
described in Figure 2.6. The heatmap displays the relative expression of each gene
across five time points and three tissues (MdP: mandibular prominence, MxP:
maxillary prominence, FNP: frontonasal prominence), with dark gray indicating
higher expression and white lower. Genes are grouped by protein family and
clustered within these functional groups. Genes whose expression was classed as
‘absent’ in >99% of the samples are indicated by a * and are included here for
completeness. (Adapted from Figures 9 and 10, Leach et al., 2009).
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(a) (b)

(c) (d)

Figure 2.8 Gene expression in the developing mouse tongue. In situ hybridiza-
tion using anti-sense probes for Zim1 (a), Hoxa2 (b), Apobec2 (c), and
E430002G05Rik (d). All panes are transverse sections of an E12.5 mouse head.
Anterior is to the right on all panels. Dark staining represents hybridization signal
from the probe. The arrows indicate areas of fainter staining. Control experiments
using sense probes did not yield specific staining. d, mandible; ns, nasal septum;
t, tongue; x, maxillary process. (Adapted from Figure 11, Leach et al., 2009).

well-understood aspects of the sub-network had been explored and a biological
explanation for the observations created, the arcs asserted only by the logis-
tic metric (those with strong support in the experimental data and more modest
support in prior knowledge) were added to the visualization, introducing an addi-
tional 25 genes to the network (total 45; Figure 2.7). The genes comprising this
larger network displayed the same striking mandible-specific expression pattern
seen in the Average combination network, suggesting that these additional genes
were also implicated in tongue development. Exploring the collated knowledge
associated with the additional genes indicated that many were indeed known
to be involved in myogenic differentiation and synapse interactions. However,
four genes (Riken clone E430002G05Rik, Zim1, Apobec2 and Hoxa2 ) had no
known relation to muscle development and were selected for experimental val-
idation. Based on understanding developed during exploration of the combined
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3R network, the hypothesis proposed was that these four genes and their protein
products would also have a role in tongue muscle development. Whole-mount in
situ hybridizations to E11.5 and E12.5 mouse embryos confirmed that all four
genes are indeed expressed in the developing mandible, specifically in the tongue
(Figure 2.8). These findings also implicated Hoxa2 perturbation as a previously
unreported cause of cleft palate (Leach et al., 2009).

The Hanalyzer, as a proof of concept implementation, demonstrates how
the 3R approach to knowledge integration is beginning to address the challenges
associated with extracting knowledge from the literature and databases, presenting
this complex knowledge in accessible and understandable ways, and supporting
the higher order cognitive processes bioscientists engage in when they develop
credible and novel hypotheses.
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Technologies and best
practices for building
bio-ontologies

Mikel Egaña Aranguren, Robert Stevens, Erick
Antezana, Jesualdo Tomás Fernández-Breis, Martin
Kuiper, and Vladimir Mironov

3.1 Introduction

Genomics technologies generate vast amounts of data of a wide variety of types
and complexities, and at a growing pace. The analysis of such data and the min-
ing of the resulting information is insufficient without a contextual interpretation,
that is, biological knowledge deduced from the data. This knowledge states the
data’s biological meaning in terms of, for instance, molecular function, cellular
location, or network interactions. Biological knowledge is diverse, vast, complex,
and volatile. These factors, together with the nature of evolved systems, make
the knowledge generated by the life sciences difficult to capture. As molecu-
lar biology has relatively recently included a systems approach, it has become
increasingly important to have precise and rich representations of the catalogs
that in turn form the basis of the networks and pathways that describe biological
systems. Therefore, biological knowledge management is becoming essential for
current research in life sciences (Antezana et al., 2009a).

Biological knowledge has traditionally been represented in human inter-
pretable formats like natural language in scientific literature, or somewhat more

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
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structured in database entries. The heterogeneous terminology used, together with
the natural language form, has made it difficult to manage and use that knowledge,
for both humans and, more importantly, computers. In order to use the comput-
ers’ ability to handle complex and large amounts of information, it has become
clear that biological knowledge should be codified in a machine interpretable
form. Only in this way can biologists begin to exploit their hard-won data.

A widely used method for codifying knowledge in a machine interpretable
form is to represent it in ontologies. Ontologies are computational formalizations
of the concepts shared by a community of scientists. Thus, ontologies can be used
to describe and define the entities of a domain, and their relations, axiomatically,
with precise semantics. The expression of knowledge with precise semantics
makes it possible for computers to perform, via automated reasoning, informa-
tion management tasks that can save scarce human resources and retrieve more
complete results from biological knowledge (e.g., new hypotheses).

Therefore, the use of bio-ontologies, that is, ontologies that represent
biological knowledge, is essential in biological knowledge management and
integration, and they have become mainstream within bioinformatics. Currently,
there are established communities of bio-ontologists, like the Open Biomedical
Ontologies (OBO) Foundry (Smith et al., 2007; www.obofoundry.org/), which
have produced important bio-ontologies such as the Gene Ontology (GO; Gene
Ontology Consortium, 2000).

Many bio-ontologies exploit the very technology that will be used for build-
ing the Semantic Web (www.w3.org/standards/semanticweb/), which is the next
‘smart’ generation of the current Web, based on the automatic management of
Web content. The W3C (www.w3.org/), the consortium responsible for the im-
plantation of the Semantic Web and other open Web standards, has been fostering
the Semantic Web Health Care and Life Sciences (HCLS) Interest Group (www
.w3.org/blog/hcls) for working towards a Life Sciences Semantic Web (LSSW).

This chapter provides an introduction to the process of building bio-
ontologies, analyzing the benefits and problems of modeling biological
knowledge axiomatically, especially with regards to automated reasoning. Thus,
the aspects that a biologist should consider in order to create a reusable, robust,
rigorous, and axiomatically rich bio-ontology are briefly reviewed, providing
pointers to successful engineering techniques and bio-ontologies. The aim
of this chapter is not to provide a detailed methodology of the creation of
bio-ontologies (the literature on the subject is vast); rather, the chapter highlights
the elements that have to be taken into account, to help the reader to make
informed decisions while building bio-ontologies.

3.2 Knowledge representation languages and tools
for building bio-ontologies

An ontology represents knowledge through axioms. Axioms are used to describe
the objects from the knowledge domain: their categories and the relationships
between them. The axioms are written using a logical formalism, a Knowledge
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Figure 3.1 Simple bio-ontology, representing a ‘toy’ knowledge domain. The
names of concepts – representing the categories or classes of objects in the
domain – (e.g., Protein) and relations among the objects (e.g., has_part) are
irrelevant for a computer; they are only ‘understood’ by humans. However, the
structure of the ontology, expressed using axioms, is what the computer is able to
manage, exploiting automated reasoning.

Representation (KR) language, which enables their computational interpretation
(Figure 3.1).

The semantics of a KR language defines the computational interpretation of
the statements (axioms) the ontologist makes in an ontology, thus, how the com-
puter ‘understands’ such statements. The different KR languages offer different
levels of expressivity (what can be said about a domain); therefore, ontologists
are able to make statements at different complexity levels, depending on the
expressivity of the language of choice. Expressivity is related to computational
tractability: the more expressive a language, the less tractable; that is, the more
computational resources are needed by a computer to operate on an ontology
written in such a language.

Currently, the most used KR languages in life sciences are the Resource
Description Framework (RDF)1, the Web Ontology Language (OWL)2, and the

1 RDF is not strictly a language for creating ontologies. However, using a broad definition of
ontology, and considering the widespread use of RDF in the LSSW and its close relation to OWL,
it has been included in this chapter.

2 RDF Schema (RDFS) offers functionality close to OWL. However, it has been left out of this
review due to the fact that it is not widely used in the LSSW, and for the sake of brevity.
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OBO format. They mainly differ in terms of expressivity, tool availability, and
communities of practice. Since RDF and OWL are official W3C recommenda-
tions to implement the Semantic Web, they are also used outside the life sciences
domain, whereas the OBO Format is only used to represent life-sciences-related
information. As RDF and OWL are part of the Semantic Web stack of technolo-
gies, OWL ‘includes’ RDF, and therefore an OWL ontology can be accessed with
OWL-specific tools (OWL expressivity level) or RDF tools (RDF expressivity
level). The following subsections describe the main features of each language,
as summarized in Table 3.1.

3.2.1 RDF (resource description framework)

RDF (www.w3.org/TR/rdf-primer/) was designed to represent information about
Web resources in the Semantic Web, thus to publish data in a basic machine
processable form. The information in RDF is represented in statements formed
by a subject, a predicate and an object, called triples. For example, a triple in RDF
would read SWI4 participates_in G1/S_transition. SWI4 is the subject,
participates_in the predicate, and G1/S transition the object (Figure 3.2).
Triples can be combined to form a graph (Figure 3.3). In an RDF graph, the
subject of a triple can be the object of another triple.

Figure 3.2 An RDF triple. A subject (SWI4) is related to an object
(G1/S_transition) by a predicate (participates_in).

RDF uses URIs (Uniform Resource Identifiers; www.w3.org/standards/techs/
uri) to identify entities (subjects, predicates, and objects). The use of URIs pro-
vides the possibility of referring to entities from different graphs that have been
published in different resources on the Web. This enables a framework to combine
graphs from different resources, or to combine graphs at query time.

RDF graphs can be queried using SPARQL (www.w3.org/TR/rdf-sparql-
query/). SPARQL is a query language that can be used to retrieve smaller graphs
from a target graph. In order to perform the retrieval, a user must define a query
graph in which one or more entities are left as variables, and the query graph is
matched against the target graph, returning the appropriate answer as a smaller
sub-graph of the target graph.

RDF is based on a simple model that enables the representation of diverse
information with very low computational costs, provided that such information
can be captured as a set of subject–predicate–object triples. Therefore, the manip-
ulation of RDF graphs through APIs (Application Programming Interfaces) like
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Figure 3.3 An RDF graph made by combining four triples. The triples share
some common entities, such as SWI4, which is the subject of two triples (partic-
ipates_in G1/S_transition and interacts_with SSA1) and the object of
another triple (Saccharomyces_cerevisiae organism_presents).

Jena (http://jena.sourceforge.net/) is straightforward. This simplicity has made
RDF the chosen language in several bioinformatics resources such as BioGateway
(www.semantic-systems-biology.org/biogateway), Bio2RDF (http://bio2rdf.org/),
and HCLS KB (www.w3.org/TR/hcls-kb/).

3.2.2 OWL (Web ontology language)

OWL (www.w3.org/TR/owl2-overview/) was designed as a language to publish
machine processable and interoperable ontologies in the Web. OWL, compared
to RDF, offers a semantic vocabulary to describe a knowledge domain. Such
expressivity may have a higher computational cost. Nevertheless, OWL allows
the representation of biological information with a finer granularity, opening up
ample possibilities for interesting applications such as automated reasoning.

The OWL semantics is based on three elements: individuals, classes (sets of
individuals), and properties (two individuals, or an individual and a data value,
are linked in a pair along a property; Figure 3.4)3. Classes are built by specifying

3 An OWL ontology that has classes, individuals and properties can be considered a Knowledge
Base (KB). If there are no individuals, the artifact can be considered simply an ontology. An ontology
describes a schema with which some entities of the domain (individuals) are described; a KB includes
the schema (ontology) and the individuals.
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the conditions that the individuals should fulfill to belong to the class, in terms
of which and how many relationships they should have, using class expressions.
OWL offers universal (only) or existential (some) qualifiers and a plethora of
typical logical constructs, such as negation (not), other Boolean operators (or,
and), and more constructs, to create class expressions. Such constructs can be
combined in complex (rich) class expressions. Class conditions can be either
necessary (e.g., every nucleus is part of a cell, but being part of a cell is not
enough to flag an organelle as nucleus) or necessary and sufficient (e.g., having
a nucleolus as a part is a necessary and sufficient condition to flag an organelle
as nucleus, as nuclei are the only organelles with nucleoli). The classes with at
least one necessary and sufficient condition are called defined classes, whereas
the classes with only necessary conditions are called primitive classes.

Classes can be subclasses of other classes, thus creating a taxonomy. The
semantics of the subclass relation reads that, given a superclass S, every indi-
vidual I of a given subclass of S is also an individual of S; for instance, all
the organelles are cell parts, but not all the cell parts are organelles (membrane
and cytoplasm are cell parts but are not organelles), therefore Organelle is a
subclass of Cell_part (instead of an equivalent class).

There are three types of properties in OWL: properties that link pairs of
individuals (object properties), properties that link individuals with data values
(data type properties), and properties that can be used to add natural language
information to axioms and entities, without affecting automated reasoning (anno-
tation properties). Object properties can be arranged in hierarchies, and features
of properties (such as transitivity) can be defined.

OWL can be expressed in various syntaxes. The most common computer
readable syntax is RDF/XML (Figure 3.5). The Manchester OWL Syntax (MOS)
offers a human-readable OWL syntax (Horridge et al., 2006). For example, the
expression from Figure 3.5 would read as follows in MOS: Nucleus subClass-

Of has_part some Protein.

<owl:Class rdf:about="#Nucleus">
<rdfs:subClassOf>
   <owl:Restriction>
     <owl:onProperty rdf:resources="#has_part"/>
     <owl:someValuesFrom rdf:resource="#Protein"/>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>

Figure 3.5 OWL RDF/XML syntax of the MOS expression Nucleus subClass-
Of has_part some Protein.

OWL is based on Description Logics (DLs; Baader et al., 2003), a well known
logical formalism. OWL offers an optimal balance between expressivity and
tractability, allowing the efficient application of automated reasoning on OWL
ontologies. Automated reasoning consists of using a program to infer axioms
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from the axioms asserted in the ontology. The asserted axioms entail the inferred
axioms. Thus, an automated reasoner makes axioms that were implicit explicit,
showing further information to the bio-ontologist. For instance, let us consider
the following two classes as being entities of our bio-ontology:

• Nucleus, with the axiom Nucleus subClassOf part_of some Cell.
In order to be a nucleus it is necessary to be part of a cell, but being part of
a cell is not enough on its own to be a nucleus (there are other organelles
that are also part of a cell, but are not nuclei). Therefore, Nucleus is a
primitive class.

• Organelle, with the axiom Organelle equivalentTo part_of some

Cell. Anything that is part of a cell is an organelle. Therefore, Organelle
is a defined class.

An automated reasoner will infer that Nucleus is a type of Organelle, thus
the axiom Nucleus subClassOf Organelle will be made explicit or ‘added’
into the bio-ontology by the automated reasoner4. This is so because the axioms
Nucleus subClassOf part_of some Cell and Organelle equivalentTo

part_of some Cell entail the axiom Nucleus subClassOf Organelle (if
all nuclei are part of a cell, and anything that is a part of a cell is an organelle,
then nuclei are organelles).

The outcome of an automated reasoning process depends strongly on the
axiomatic richness of the bio-ontology. It should also be noted that an automated
reasoner acts in a ‘ruthless’ manner, showing the axioms that our modeling
entails; in the above reasoning example, plasma membrane and cytoplasm should
not be classified as organelles, indicating a likely modeling error on our side. It is
necessary to regularly run an automated reasoner while building a bio-ontology,
either to be reminded that our modeling is wrong or to highlight new information
that was implicit (‘hidden’) in our modeling, entailed by the asserted axioms5. The
more axioms we express in an ontology, the better; it is better to be axiomatically
wrong (the automated reasoner tells us why we are wrong) than axiomatically
correct and conceptually wrong (because we have not added those axioms). The
automated reasoner shows the contradictions in our conceptual world.

In more concrete terms, automated reasoning can be used in the
following ways:

(1) Perform complex queries against the knowledge stored in the ontology.

(2) Infer the class–subclass relationships from the class expressions; that
is, build automatically the class hierarchy (taxonomy). For example, the

4 This modeling (incorrectly) assumes that plasma membrane and cytoplasm should be classified
as organelles; simplified for the sake of the example clarity.

5 The automated reasoner will infer all the information entailed by the asserted axioms, including
the information that a human would miss because of the extent or complexity of such information.
That is why, among other reasons, automated reasoners can be so useful in knowledge-intensive
disciplines like life sciences.
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Normalization technique allows one to maintain a multiple inheritance
in an ontology relying solely on the automated reasoner, provided that
the appropriate class expressions are added to the ontology. In another
example, an automated reasoner was used to check the completeness of
the GO class hierarchy, in the Gene Ontology Next Generation (GONG)
project (Egaña Aranguren et al., 2008a).

(3) Given an individual and its relationships to other individuals, the auto-
mated reasoner can infer to which class(es) it belongs.

(4) Check the consistency of the asserted axioms, as the automated reasoner
can flag contradictory axioms. Such a procedure is used, for example, to
ensure that the information gathered from different resources commits to
the same schema (Miñarro-Gimenez et al., 2009).

Some OWL features stand out, apart from its expressivity, in terms of
information integration:

• OWL (as well as RDF) relies on URIs to identify entities. Therefore, the
Web machinery is also available for OWL.

• OWL is self-descriptive, that is, the schema and the data described using
such schema are expressed in the same language: schema reconciliation is
not needed, and the reconciliation problem is shifted to a more abstract
(conceptual) level.

• Open World Assumption (OWA): OWL semantics interpret the absence
of information as unknown rather than false. OWL assumes that, as the
knowledge of the world we have is by definition incomplete, we cannot
infer negation from the absence of information. Therefore, new information
can be added to our bio-ontology and prior inferences remain valid, for
example when importing entities from another OWL ontology (however,
a new inconsistency may be triggered). This model fits with the biological
knowledge domain, always being extended by different agents.

• Lack of Unique Name Assumption (UNA): in OWL, the fact that two
entities have different names does not mean that they are different. Such
entities need to be explicitly asserted to be different with the axioms dif-
ferentFrom and disjointWith. On the other hand, different entities can
also be asserted to be the same entity with the axioms sameAs and equiv-

alentTo. For example, an OWL ontology can describe a gene with the
name CYC8, and the same gene can be described in another OWL ontology
with the name SSN6: they can be asserted to be the same entity (e.g., CYC8
sameAs SSN6), easing integration as no mapping must be created.

The expressivity and integrative features that OWL provides enable the
representation of a considerable amount of biological concepts in a com-
putationally accessible manner (Stevens et al., 2007). Such features have



BEST PRACTICES FOR BUILDING BIO-ONTOLOGIES 77

promoted the use of OWL in several domains, and many tools supporting
it have been also developed (www.w3.org/2007/OWL/wiki/Implementations),
amongst which Protégé (http://protege.stanford.edu/) stands out as the most
used OWL editor. Moreover, there are automated reasoners available for OWL,
like Pellet (http://clarkparsia.com/pellet/) or FaCT++ (http://code.google.com/
p/factplusplus/), and APIs like the OWL API (www.owlapi.sourceforge.net/).
OWL has been successfully employed in projects such as OBI (www.purl
.obolibrary.org/obo/obi), CCO (www.cellcycleontology.org/), BioPAX (www
.biopax.org/), and PhosphaBase (www.bioinf.manchester.ac.uk/phosphabase/).

3.2.3 OBO format

The OBO format (www.geneontology.org/GO.format.shtml) has become the de
facto KR language to model biological concepts for most of the OBO bio-
ontologies, which are the most widely used bio-ontologies. Its development has
been mainly fostered by the GO consortium (www.geneontology.org/). Figure 3.6
shows a sample entry of a term from the GO.

[Term]
id: GO:0005634
name: nucleus
def: "A membrane-bounded organelle of eukaryotic cells in which chromosomes
are housed and replicated. In most cells, the nucleus contains all of the cell's
chromosomes except the organellar chromosomes, and is the site of RNA synthesis
and processing. In some species, or in specialized cell types, RNA metabolism or
DNA replication may be absent." [GOG:go_curators]
synonym: "cell nucleus" EXACT [ ]
xref: Wikipedia:Cell_nucleus
is_a: GO:0043231 ! intracellular membrane-bounded organelle

Figure 3.6 An OBO entry describing the term Nucleus from the GO.

In contrast to languages such as OWL, OBO has been tailored to the needs
of the bio-ontologists (e.g., OBO offers an efficient mechanism for fine-grained
annotations on ontology terms), resulting in the perception that it is more
intuitive and more appropriate for biological knowledge modeling. Although
OBO does not rely on any formal semantics, OBO algorithmic processing
tools have been implemented, like the OBO-Edit reasoner (www.oboedit
.org/docs/html/The_OBO_Edit_Reasoner.htm), the OBO Language (OBOL;
Mungall, 2004), and the OBD-SQL reasoner (Mungall et al., 2010). OBO
ontologies can also be translated into OWL to exploit automated reason-
ing, but such translation is not completely free of problems (Golbreich
et al., 2007). In terms of expressivity, OBO can be used to represent relatively
complex axioms, but composite expressions like Nucleus subClassOf

(part_of some Cell) and (has_part only (Nucleus_membrane or

Nucleolus and not Ribosome) cannot be expressed.
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OBO is relatively human readable and easy to manipulate programmati-
cally, with APIs like ONTO-PERL (Antezana et al., 2008), or graphically, with
ontology editors like OBO-Edit (http://oboedit.org/). OBO has been successfully
employed in very influential projects such as the GO or the Cell Type Ontology
(CL; Bard et al., 2005). The GO is used for annotation by many current bioinfor-
matics resources (www.ebi.ac.uk/GOA/). The CL is used in projects like XSPAN
(www.xspan.org/).

3.3 Best practices for building bio-ontologies

Ontology building is still in a transition state from a ‘craft’ to a fully industrial
engineering discipline (Bodenreider and Stevens, 2006). Therefore, there are
neither established methodologies nor fully accepted principles. There are,
however, practices that have already demonstrated their utility, and they
are agreed to be important by the bio-ontologist community, explained as
follows. Figure 3.7 summarizes such practices and the place they occupy in the
bio-ontology development process.

Figure 3.7 Diagram of the development cycle of a bio-ontology, with the best
practices described in Section 3.3. The bio-ontology development starts by defin-
ing the scope, and it is repeated as necessary. User feedback is used to improve
the bio-ontology, but generally without changing the scope and identity scheme,
and barely changing the used ULO or set of relations. Documentation should
be provided through the whole process. Automated reasoning should be used at
development time (e.g., for consistency checking) and also users can exploit auto-
mated reasoning to query the ontology. Users can also interact with the ontology
without using automated reasoning.

3.3.1 Define the scope of the bio-ontology

Bio-ontologies are able to perform a whole range of functions (Stevens and
Lord, 2008). The function(s) of a bio-ontology will determine its scope and
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‘shape.’ Therefore, explicitly and clearly defining the function (and hence
the scope) of an ontology in early development stages, and sticking to such
definition, is important to avoid spending too much effort in extending the
ontology endlessly.

3.3.2 Identity of the represented entities

One of the most important elements of a LSSW is the identity of entities that
form the biological knowledge domain, such as genes and proteins (Good and
Wilkinson, 2006). Thus, many current bioinformatics resources describe the same
entity with different identities (e.g., many resources give different names to the
same gene). Different global identity schemes have been proposed to address
the problem, but none has prevailed. The latest proposal is the Shared Names
endeavour (http://sharedname.org/).

It is important to use an explicit identity scheme for the bio-ontology being
built, and be consistent in its application. It might be that the identity scheme
chosen does not ‘succeed’ and be used in the future by other resources, but
nonetheless it will facilitate internal knowledge management, and if another iden-
tity scheme succeeds later on, it will be possible to map to it.

3.3.3 Commit to agreed ontological principles

There are ontological principles that are useful in order to make the bio-ontology
interoperable with other bio-ontologies and resources. Such principles, however,
impose a certain structure on our bio-ontology, and they determine strongly the
subsequent modeling (Schulz et al., 2008). Therefore, the bio-ontologist must
maintain an equilibrium between using such principles and being too influenced
by such principles in the modeling process. Thus, the bio-ontology development
should follow a minimal commitment policy.

In the case of OBO bio-ontologies, there is a set of relationships, collected
in the Relation Ontology (RO; Smith et al., 2005), that can be used in our
bio-ontology. The use of such relations favors the integration with other bio-
ontologies that also use RO, as, for example, the participates_in relation in
our bio-ontology will be the same participates_in relation present in such
other bio-ontologies. Therefore, bio-ontologies using such relations can be effi-
ciently integrated and queried. Also, the RO relations have a precise semantic
definition, saving time for the bio-ontologist, as there is no need to define the
relations of the bio-ontology (if satisfied with the RO definition).

The use of an Upper Level Ontology (ULO), deeply related with the use of a
set of relationships like RO, is also a recommended ontological practice. A ULO
is generally an ontology with a few concepts that sits on the upper levels of the
bio-ontology we are building, providing basic distinctions of types of concepts,
like process vs. thing, self standing vs. refining entity, and so on. A ULO not
only helps in integration with other bio-ontologies that are based in the same
ULO, but also helps in building a sound and modular bio-ontology by creating
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a cleaner structure with explicit distinctions. One of the most used ULOs in
bio-ontologies is the Basic Formal Ontology (BFO; Grenon et al., 2004).

3.3.4 Knowledge acquisition

There are different ways of populating our bio-ontology with knowledge,
described as follows. These methods are not disjoint; they can be used in a
complementary manner.

An ideal method for obtaining the knowledge is to elicit it directly from the
domain experts or the prospective users of our bio-ontology. Knowledge can also
be obtained from extant resources. For example, data can be integrated from dif-
ferent resources in our bio-ontology, or knowledge from other bio-ontologies can
be reused. Reusing content of other bio-ontologies is important to ease develop-
ment and create a useful bio-ontology, since such a bio-ontology will be more
interoperable with other resources. The OBO foundry ontologies offer a wealth
of content that can be reused and extended with new axioms and entities. For
example, that is the strategy followed in the creation of CCO (Antezana et al.,
2009b).

3.3.5 Ontology Design Patterns (ODPs)

ODPs are solutions for common modeling problems that appear when building
ontologies (Egaña Aranguren et al., 2008b). Thus, an ODP solves a concrete
problem efficiently, as the ODP has been tested by a community of ontolo-
gists, and agreed to be an efficient modeling solution. Each ODP is thoroughly
documented, clearly stating the requirements that the use of the ODP fulfills;
that is, the problem that it solves. An ODP is like a ‘cooking recipe’ of how
to create axioms that perform a given function within an ontology. Therefore,
a bio-ontologist need only explore ODPs and apply the appropriate one in the
bio-ontology being built. For example, in the case of the Value Partition ODP
(Figures 3.8 and 3.9), such an ODP solves the problem of how to represent a
feature that has only certain values (e.g., the height of a person can only be tall,
medium or short). Ideally, if a bio-ontologist is confronted with the problem of
representing such structure in a bio-ontology, he or she will explore ODP cata-
logs (see below), read the documentation, and, as the Value Partition ODP fulfills
his or her requirements, apply it in the bio-ontology. Following such a procedure
the bio-ontologist saves a lot of time, as many axioms are applied automatically
in the bio-ontology.

ODPs are presented as fragments of ontologies that solve a concrete modeling
problem, as a concrete set of axioms, but with an abstract structure: when applied
in the ontology, such axioms relate the actual entities of the ontology. Therefore,
ODPs can also be regarded as modules of ontologies to be applied ‘off the shelf’:
an ontology can rapidly be built by applying a collection of ODPs.

Using ODPs in the development of an ontology makes such development
faster, more consistent, and explicit. The resulting bio-ontologies have a richer
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Figure 3.8 Abstract representation of the Value Partition ODP. This ODP solves
a concrete problem; namely, how to represent exhaustive sets of values in OWL.
P can be any feature (regulation, color, height, etc.), and V any value (positive
or negative; red, blue or white; etc.). This abstract structure is presented with
documentation that explains how the ODP can be used (e.g., motivation, structure,
elements, implementation, and result).

axiomization, obtained with less effort, enhancing automated reasoning. They are
also more reusable and interoperable with other bio-ontologies.

There are two main catalogs where ODPs can be obtained (http://odps.sf.net/,
http://ontologydesignpatterns.org). Once an ODP has been chosen, there are dif-
ferent methods for applying it. The ODP can be directly imported into the
ontology, manually recreated, or applied with ODP-oriented tools like the NeOn
toolkit (http://neon-toolkit.org) or the Ontology PreProcessor Language (OPPL;
http://oppl.sourceforge.net/).

3.3.6 Ontology evaluation

Ontology evaluation is a controversial issue, and there is a wealth of method-
ologies to choose from, depending on the needs of the project. Three main and
complementary categories can be identified, according to the aims of the evalu-
ation process: ranking, correctness, and quality.

Ranking approaches pursue the selection of the best ontology for a particular
task, so they apply criteria that focus on that particular task. Ranking strategies
may be driven by users, experts, and so on. Bio-ontologies can get different results
using different ranking strategies, as different quality aspects are measured. For
example, in Aktiverank (Alani et al., 2006), ontologies are ranked against search
terms, so that the best ontology is the one that best matches the query. For this
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Figure 3.9 Application of the Value Partition ODP in GO. Thus, the abstract
structure from Figure 3.8 is converted to a concrete structure with concrete enti-
ties, and linked to the rest of the bio-ontology by the regulation_type relation
(with the existential qualifier).

purpose, quantitative metrics such as the coverage of an ontology for the given
search term, the number of connections (relations, subclasses, superclasses, and
siblings), or the closeness of the classes that matches the search terms in the
ontology are used.

Correctness approaches determine the quality of a bio-ontology by applying
formal theories. The most relevant approach is provided by Ontoclean (Guarino
and Welty, 2004), which checks for the formal correctness of the taxonomy,
based on rigidity, identity, unity, and dependence principles.

Quality approaches provide frameworks that are based on a series of qualita-
tive and quantitative criteria that can be organized in quality dimensions. The goal
of such approaches is to provide an overview of the strengths and weaknesses
of the bio-ontologies in the particular quality dimensions rather than finding the
best one for a particular task. Quality approaches are likely to include criteria
that cannot always be optimized simultaneously, and this makes their application
more complex. In (Fernández-Breis et al., 2009), an ISO 9126-based framework
was proposed, comprised of seven quality dimensions: structural, functionality,
reliability, usability, efficiency, maintainability, and quality in use.
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3.3.7 Documentation

Most KR languages allow the inclusion of information to axioms and
entities in the form of annotations that are not processed by the automated
reasoner6. For example, OWL allows one to create custom annotation properties
or use the already defined rdfs:comment, rdfs:label, or the Dublin Core
(http://dublincore.org/) annotation properties. The OBO format has its own set
of annotations tailored to the OBO community needs. Annotations are usually
used to capture information that cannot be represented in axioms, to capture
information that should not be represented in axioms (e.g., the name of an
entity in different languages) or to express facts about the modeling in natural
language (e.g., the rationale for modeling decisions).

It is important to capture as much information as possible in annotations, as
it will be used by other developers or users. Such annotations should also be as
structured as possible: for example, the GO term names are syntactically very
repetitive (Ogren et al., 2004), which helps in computationally processing them
(Egaña Aranguren et al., 2008a).

3.4 Conclusion

The Life Sciences Semantic Web (LSSW) faces many challenges. KR languages
with precise semantics like OWL, being powerful and robust solutions for a
truly distributed and automatic knowledge management, are not free of problems.
The increasing volume of available data and supporting bio-ontologies reveals
limitations in terms of performance, especially regarding automated reasoning
and the management of KBs. Performance issues are expected to be solved as
the technology evolves. However, there are also problems in the ‘social’ side
of bio-ontology creation, the main one being the lack of agreement in modeling
principles: for example, there is not even a consensus on how to represent a
concept as important and basic as the one of species (Schulz et al., 2008). Such
lack of agreement is a community problem, but there are practices, like the use
of ODPs, that can contribute to its solution.

Even taking into account these problems, the LSSW offers an increasing
number of examples that make good on its promise to help in the informa-
tion management of biological knowledge, and to support advanced queries that
demonstrate the power of semantic data integration.

The adoption of a precise semantics opens new paradigms of biological
research, like the Semantic Systems Biology (SSB) approach (Antezana
et al., 2009c). SSB is a systems biology approach that combines Semantic Web

6 The term ‘annotation’ has a somewhat different meaning in bioinformatics and KR. In bioin-
formatics, an annotation is information attached to biological data, such as the molecular function of
a gene product. In KR, an annotation is extralogical information added to an axiom or an entity of
an ontology, usually using natural language. We are using the KR meaning throughout the chapter.
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technologies for analyzing data and formalized knowledge to engineer biological
system models. Kitano’s Systems Biology paradigm (Kitano, 2002) hinges
on mathematical model-based system behavior predictions, or hypotheses,
and validation in new experiments. In SSB, data and new knowledge are
(automatically) checked for consistency against existing knowledge, and queries
and automated reasoning on semantically integrated knowledge are used to
extract new knowledge and hypotheses.

Post et al. applied such an approach to study the role of histone modifi-
cation in gene expression regulation (Post et al., 2007). In that use case as
well as in other efforts such as the YeastHub (Cheung et al., 2005), CViT
(Deisboeck et al., 2007), and the Cell Cycle Ontology (Antezana et al., 2009b),
the workflow of an SSB approach was followed. Some other initiatives are
NeuroCommons (http://neurocommons.org), focused on neuroscience, and the
SSB portal (www.semantic-systems-biology.org). All these initiatives demon-
strate the added value that the SSB approach can offer to the understanding of
biological systems.

This chapter has provided a brief overview of the extant technologies and
tools to build bio-ontologies, as well as real bio-ontology examples and pointers
to the future of the LSSW, like SSB. Also, it has highlighted the most important
issues and practices that should be taken into account in order to create a useful
bio-ontology with the least possible distress. Creating proper bio-ontologies is a
very hard task; however, it is even harder to manage biological data, information,
and knowledge efficiently without them.
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Design, implementation
and updating of knowledge
bases

Sarah Hunter, Rolf Apweiler, and Maria Jesus Martin

4.1 Introduction

A clear message emanates from the major bioinformatics infrastructure institutes
and initiatives: the development and maintenance of biological knowledge bases
is core to their missions . At the European Bioinformatics Institute (EBI), the
aim is ‘. . .to provide freely available data and bioinformatics services to all
facets of the scientific community in ways that promote scientific progress.’
Similarly, the National Center for Biotechnology Information (NCBI) ‘creates
public databases. . . develops software tools. . . and disseminates biomedical
information. . . for the better understanding of human health and disease.’
Biology and biological research is becoming inexorably linked with computation
as a consequence of both the digitization of biological data and increasingly vast
quantities of these data. The organization and provision of biological data in
knowledge bases is therefore critical for related research to be able to continue
progressing in a manageable and effective way.

The first biological knowledge bases housed data in relatively simple formats,
and one of the first to be widely recognized was the Protein Data Bank (PDB),
which stored protein structures from an international consortium of crystallogra-
phers and structural biologists (Bernstein et al., 1977). The motivations behind
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forming the PDB are as relevant today as they were at its inception almost 40
years ago; that is, the concept of sharing data via a single resource to mutual
scientific benefit. Other databases followed suit, and by the 1980s scientists were
depositing novel genome and EST nucleotide sequences in EMBL-bank, DDBJ,
and GenBank, and protein sequences in Swiss-Prot.

The technological advances in genome sequencing over the past few years
have led to a massive decrease in cost and increase in throughput of genome
sequencing projects. A consequence of this is that the number of nucleotide
sequences (and, by extension, protein sequences) which have been deposited into
public repositories has also grown at a rapid rate, with almost 10 million protein
sequences currently existing in the UniProtKB repository, compared with under
a million sequences 10 years ago and around 10 thousand sequences 20 years
ago. Biology and its data are regularly stated to be expanding in size faster
than Moore’s Law, and this can generally be attributed to these improvements
in technology and a widening of their availability. The prevalence of the trend is
apparent in Figure 4.1, which displays data depositions in structure, nucleotide,
and protein knowledge bases over the past decade.
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Figure 4.1 Trends in biological knowledge-base sizes over the past decade. Data
from EMBL-Bank (for DNA data), UniProtKB (for protein data), and PDBe (for
3D structure data).

The expanding numbers of protein sequences and related data demand new
approaches in data storage, data structuring, and data analysis. In this chapter
we will discuss how biological knowledge bases are developed and maintained,
mainly using the EBI databases InterPro (Hunter et al., 2009) and UniProtKB
(UniProt Consortium, 2009) as illustrative examples.
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In 2002, the Universal Protein Resource (UniProt) was established as a
central resource of protein sequences and functional information, providing essen-
tial services to a wide range of scientists in biological research. UniProt is the
result of a collaborative effort between well established, but until then, distinct
protein databases: Swiss-Prot and TrEMBL, operated by the Swiss Institute of
Bioinformatics (SIB) and the European Bioinformatics Institute (EBI); and PIR-
PSD, produced by the Protein Information Resource (PIR). The consolidation
of these resources under UniProt facilitated the introduction and development of
new database components, each of which was specifically designed to address
a key need in protein bioinformatics. The UniProt Knowledgebase (UniProtKB)
provides protein sequences with extensive annotation and cross-references and it
is an essential resource for scientists working in biological research. The UniProt
Archive (UniParc) is the main sequence storehouse which is used extensively as a
source of protein sequences for other biological resources, including InterPro. The
UniProt Reference Clusters (UniRef) condense sequence information and annota-
tion to facilitate both sequence similarity searches and protein sequence analysis.
The UniProt Metagenomics and Environmental Sequences database (UniMES)
focuses on storing the increasing volume of data from environmental and metage-
nomics studies.

The manual curation of sequences in databases such as UniProtKB/Swiss-
Prot is of undisputed importance; however, it is painstakingly slow work and, as
such, cannot hope to keep up with the explosion in sequence data. In the 1990s,
several groups recognized that automated methods of classifying and annotating
sequences would be necessary in order to deal with the increasing volume of
uncharacterized sequences. The resources produced by these groups aimed to
model current knowledge about protein domains, families, and sites and worked
under the assumption that proteins with similar sequences and/or structures could
possibly also share similarity of biological function. Each of the resources use
a slightly different, complementary technique for modeling, variously using pro-
file hidden Markov models (HMMs), motif ‘fingerprints,’ scoring matrices, and
regular expressions. In 1999 the InterPro database was created, and initially amal-
gamated four resources (PRINTS, PROSITE, ProDom and Pfam) together. Since
then, seven other databases have also joined the InterPro consortium; SMART,
PIR SuperFamily, Panther, HAMAP, TIGRFAMs, CATH-Gene3D, and SUPER-
FAMILY. Each member database of InterPro has its own niche in methodology
and/or biological focus, making InterPro the most comprehensive protein classi-
fication resource available.

The amount of data is not the only aspect which has grown rapidly; increas-
ingly, a greater number of biologists are accessing these resources and using them
in their daily work. Biology is becoming more digitized and computer-centric,
and this places other pressures on knowledge bases, where they must cope not
only with an audience that is significantly larger but also which has a widening
range of experiences and expectations.

The combination of factors presented above has presented us with numerous
challenges, including the question of how to create a knowledge base that is
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optimally designed for maintenance as well as for delivering its contents to
its users. In this chapter we will outline the methodologies we have used to
overcome these challenges, explaining how they have influenced the design of
these knowledge bases and the infrastructure that supports them.

4.2 Sources of data in bioinformatics
knowledge bases

Data feeding into public biological repositories can generally be subdivided into
three types: data submitted by external users and collaborators; data generated
by internal database curators; and data generated by automatic means.

4.2.1 Data added by internal curators

Central to the biological knowledge-base concept is data curation. Biological data
curation typically involves experts (such as PhD level scientists) interpreting data
and literature and using this information to populate the database. It is a highly
time-consuming and manual process, yet it is highly appreciated as it adds value
and quality to a resource.

The range of work performed by a curator can be quite wide and can include
the addition of information stating whether data is ready to be released to the
public or not; the composition of text culled from literature sources to describe
an aspect of a database entity; the association of ontological terms and classifi-
cation systems to an entry and the structuring of relationships between data in
the database (e.g., ‘This protein entity inhibits this enzyme’s activity.’ or ‘This
structural fold relates to these functional families.’).

The size of a database curation team can vary considerably from a single
curator to multiple curators spread over multiple sites (UniProt has 60 curators
working at 3 different sites). The most obvious factor influencing this is the type
and volume of data these curators are handling.

4.2.2 Data submitted by external users and collaborators

Knowledge bases often allow submission of data by users who are not part
of the institution where the resource was developed and maintained. In fact,
the raison d’être of several knowledge bases is to be the central archive of a
particular kind of data (for example, the INSDC’s nucleotide archives EMBL,
DDBJ, and GenBank or ArrayExpress, the repository for microarray data held
at EBI). These databanks provide tools to allow submission of data on both
a small and a large scale. For small-scale submissions, Web-based forms tend
to be provided where a user can interactively enter data which is subsequently
validated (automatically and/or manually) before it is allowed into the repository.
In the case of large-scale submissions, a standardized data format is typically
defined, usually in a language such as XML (eXtensible Markup Language),
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although proprietary file formats also exist (these proprietary formats may be a
throw-back to the early days of bioinformatics repositories; many were flat file-
based, initially).

A more recent addition to the repertoire of user data submission tools is the
Wiki concept, where any user can edit pages containing data from a resource. A
few databases, such as the RNA family database Rfam (Gardner et al., 2009), use
Wikis to allow users to contribute annotations to their resource. This approach
has become more popular within Bioinformatics resources in recent years and
it is likely that other knowledge bases will follow this trend and use Wikis as
another method for obtaining data to supplement existing content.

4.2.3 Data added automatically

A significant proportion of data contained in Bioinformatics knowledge bases
is the result of automatic associations or predictive calculations. In order to be
able to cope with large increases in data volumes and complexity, data providers
are resorting to automatic predictions to populate areas that would otherwise be
‘thin’ on information. The information that is be added in this way is not as
in-depth as that added by a human curator; however, these processes’ throughput
is much greater.

Additionally, rather than relying on manual processes to load and transform
data, automated pipelines are implemented (where possible) that require minimal
human intervention. Again, this is as a consequence of the need to handle very
large amounts of data in an efficient way.

Finally, in an environment when quality and accountability is critical, data
auditing has a central role and is highly recommended. Auditing is of major
importance in knowledge bases, as it tells the user and knowledge-base provider
how the data has changed, when it changed and who or what made those changes.

As will be demonstrated in the rest of this chapter, understanding the data
which are captured by knowledge bases is the key to understanding the design
choices made in their implementation.

4.3 Design of knowledge bases

Designing bioinformatics knowledge bases is not an easy task; where many have
succeeded, many more have failed. All too often, these failures occur because
the resultant software does not adequately address the needs of the end user.
One reason for this is that technology becomes a central driver of the design,
rather than the focus being kept on what the software will eventually be used
for. Another cause is a lack of communication between resource developers and
end users. For these reasons, design is arguably the most critical phase in a
knowledge base’s development. In this section we will describe steps that can
be taken during the design phase of a knowledge base that ought to increase the
likelihood of a successful outcome.
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4.3.1 Understanding your end users and understanding
their data

An obvious major factor that has an influence on the design of a knowledge base
is the type of data that is being stored in it and what questions will be asked of that
data by users. Knowing the kinds of user who will be accessing your resource (and
how they will be accessing it) is therefore critical if you are to produce something
that is subsequently adopted and used by your target community. Knowledge
base developers frequently become too inwardly focused during the design and
development phase, forgetting to prototype and iterate designs with end user
input. This lack of external input is damaging as it can lead to a project taking a
tangential path and producing a final product which does not fulfill requirements.

The technical people designing and building knowledge bases are not always
experts in the particular data domain that will be represented. Therefore, a first
challenge is to ensure that a dialog exists between the knowledge base developers
and domain experts throughout the design process. An understanding needs to
be reached between both parties regarding what the important data to capture
is, what terminology to use during design discussions, and what the eventual
scenarios for usage will be. Many software development projects therefore start
with a requirements gathering phase, where the data that are to be represented
in the knowledge base are cataloged in consultation with developers, the domain
expert, and the resource’s intended user base. It may be that the domain expert or
developer already feels she or he has a good idea of what will be contained within
the knowledge base, but it is generally a good idea to canvass the community for
opinions, so that the data catalog is as comprehensive as is necessary. However, a
danger exists that trying to take all ideas and opinions into the final design leads
to a loss of focus in the functionality, and development teams should remain
mindful of this.

Domain experts and developers work together to identify which data compo-
nents are central to the resource, with the intention that a model of the data can
be created which adequately represents it. The advantage of creating a data model
is that a description of the data then exists that can be referred to throughout the
design process. Hopefully, this means that the chances of superfluous features
being added or something important being overlooked or omitted are diminished.
Data models should attempt to represent the data in a way that is meaningful to
both the users of the resource and the developers working on it. Typically, a data
model will consist of entities (i.e., the data objects that have been cataloged as
being core to the resource) and the relationships between these entities; data rep-
resentations are therefore often called Entity Relationship Models (ERMs). This
type of representation is frequently encountered in object-oriented approaches to
software design or where a relational database is under development. Developers
tend to use standard formats to describe a data model; examples of this are DDL
(Data Definition Language), DTD (Document Type Definition) used with XML
documents, or UML (Unified Modeling Language) which can offer additional
benefits, such as the ability to map to other languages, such as Java or XML.



DESIGN, IMPLEMENTATION AND UPDATING OF KNOWLEDGE BASES 93

4.3.2 Interactions and interfaces: their impact on design

Broadly speaking, there are two main ways that users access bioinformatics
knowledge bases: programmatically and interactively . Programmatic access
tends to be used where a user wishes to do some sort of large-scale analysis of
data which is too complex or time-consuming to perform manually, or where
they want to seamlessly display information from a resource in conjunction with
data from their own, without having to worry about keeping a local copy of
that data up to date. Interactive access is the more traditional method of using a
Web interface or GUI (Graphical User Interface) to allow a user to search and
browse the data in your knowledge base. Both require careful design as they
each need to behave in a way that is expected by the user.

In the past, bioinformatics knowledge bases perhaps did not place as much
emphasis on usability as they do currently. This is possibly because the data
they were storing and visualizing initially were not as complicated as they are
now. This increase in complexity, combined with higher expectations from a
more sophisticated, Web-aware user base has made usability testing a priority in
knowledge-base design.

4.4 Implementation of knowledge bases

4.4.1 Choosing a database architecture

In biological repositories in the 1970s, punch cards were still used for data storage
and exchange; in the 1980s the first releases of the Swiss-Prot database used a
text file-based catalog of protein sequences; in the 1990s, moves were made
towards utilizing database management systems to organize increasing amounts
of data, some of which had not been encountered before (e.g., from MicroArray
technologies). Now, in the 2000s, we are faced with handling and analyzing
enormous quantities of genomic and proteomic data resulting from new projects
sequencing many thousands of genomes.

The vast majority of modern bioinformatics databases have complex data
structures and consequently rely on relational database management systems
(RDBMSs) to ensure data integrity. For early, simple versions of knowledge
bases, a file system-based approach might have sufficed; however, this is no
longer sustainable. The main RDBMSs used in Bioinformatics knowledge bases
are typically ANSI SQL compliant, and, at EBI, are mainly Oracle (InterPro,
UniProt and ChEBI, for example) or MySQL (Ensembl), although PostGres is
occasionally also used.

There are three principle factors to take into account when deciding upon
your database architecture.

(1) Performance: as databases get larger and more widely utilized, perfor-
mance of the system becomes a key factor. Using a well-established
DBMS and optimizing both the hardware and software set-up should
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help limit negative effects on performance and allow fast updating and
querying of the data contained within. The use of appropriate indexes
also contributes a positive effect.

(2) Back-up and recovery: being able to recover from losses of data or
disasters is crucial if the amount of up-time of a database is to be max-
imized and users’ faith in the resource is to be maintained. Inefficient
back-up strategies can not only delay the recovery of data but also impact
negatively on performance.

(3) Purpose: the role of a particular database within a larger system will
obviously affect how it is configured. If a database is constantly updated
by multiple concurrent users and the data in it is dynamic, a normalized,
relational database would be well suited in this role. However, if the data
is more static and the primary function of the database is for querying
rather than editing, a denormalized, query-optimized schema might be
chosen or, alternatively, an indexed file-based system.

At the heart of UniProtKB and InterPro is a series of databases (both relational
and flat-file) which are used for development and testing of software changes,
production of data, and serving of that data to the public. Each database has a
different purpose, outlined in Figure 4.2.

Being able to uniquely identify entities within a biological database is impor-
tant not just for ensuring referential integrity within the database itself but also
to allow users to unambiguously refer to entities within it. Within UniProtKB,
there are multiple ways to identify protein sequence entities:

(1) An entry name ID , which is a unique but non-stable human-readable
identifier, often containing biologically relevant information. It consists
of up to eleven uppercase alphanumeric characters with a naming con-
vention that can be symbolized as X_Y, where X is the mnemonic protein
identification code and Y is the code for the species identification. For
example, SRPK1_HUMAN.

(2) An Accession which uniquely identifies the protein entity. For example,
Q96SB4.

(3) A Checksum which is calculated on the sequence and uniquely identifies
it. For instance, 900E980FE1C16B9A.

(4) A numerical identifier which is only used internally within the database,
as primary keys for enforcing referential integrity of the data.

An often overlooked issue within biological databases is how to make sure that
users understand which identifiers are stable and therefore suitable for long-
term identification of a particular entity. In UniProtKB, the accession uniquely
identifies a specific protein, usually the longest variant of the sequence and typi-
cally one from a particular species. However, with time, the underlying sequence
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Figure 4.2 Outline of how database instances are arranged in InterPro and
UniProtKB, and what purposes they serve.

itself may change (due to corrections of sequencing or gene prediction errors,
for example), or other protein entries in UniProtKB may be merged in with that
entry. In this case, the accession may become ‘secondary’ to the entry; that is,
a user will still be able to use their accession to access the information around
the protein but it may no longer be the primary way that the protein is iden-
tified. If the exact sequence of the protein is important for the purposes of the
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user, the accession on its own is probably not sufficient. Instead, the user should
use the version number provided with the accession, as this only changes if the
underlying sequence of the entry changes (e.g., Q96SB4.2 indicates the second
version of the protein identified by Q96SB4). These methods of identification
should therefore be used whenever users wish to refer to a particular protein,
such as when they are creating a cross-reference from another resource or are
publishing protein-related data in a scientific journal. The entry name ID should
not be used in this manner as it is liable to change and is not tracked; it is only
provided because of its readability (for example to ensure that related entries have
consistent and similar names or when entries have manually annotated protein
names). Later in the chapter, we discuss how important sequence and accession
versioning is to internal processes at UniProt and InterPro.

4.4.2 Good programming practices

In any software development project, there should be two mantras: Keep Things
Simple and Use Good Programming Practices . Generally speaking, the fewer
technologies you use in a project, the easier it is going to be to maintain;
this includes the programming languages that are going to be used. The preva-
lent programming language used within the UniProtKB and InterPro projects is
Enterprise Java after a conscious decision was made to minimize the number of
programming languages used overall, so that any software engineer on the team
can interchangeably work on the code, insuring maintainability of the resource
for the future. Other scripting languages, such as shell programs, SQL, Perl and
python continue to be used by our teams but not extensively.

Where possible, developers should be encouraged to share development tasks,
partly so that multiple software engineers can support, develop and maintain the
code. It also reduces the risk of errors appearing because developers can review
and check each other’s code as it being written. Storing of code in a single, cen-
tralized code repository such as CVS (Concurrent Versioning System) or SVN
(Subversion) allows multiple software engineers to access and edit software com-
ponents of a single system in a manageable, robust manner. In both InterPro and
UniProt, CVS is used to capture changes to the software accessing the database,
together with SQL scripts that describe both the original database schema and
the changes which have been applied to it. These schema evolution scripts are
tagged when major software releases occur, to allow tracing of which schema
worked with a particular version of the software and vice versa. In addition to a
central repository, a continuous integration server (such as TeamCity or Cruise-
Control) may be used to encourage frequent updates of code to the repository,
with thorough overall testing and builds of the software.

In UniProt and InterPro, ‘unit tests’ are systematically used during the soft-
ware development process to ensure that the code meets initial design require-
ments and would continue to perform as intended if changes were made at a
later date. Each developer needs to write a test for every class as it is developed,
making sure that this covers the entire functional requirement for that class. It is
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important that all code that is released into the source code repository includes
tests that run at 100%. This ensures that all functionality always works. When
there is a new code release, all tests are run and any failure can be quickly
identified and fixed. The addition of tests in the code is a cost-effective way of
ensuring software quality, in particular, when many developers are involved in
the maintenance of the code.

When new features are being implemented in any data supply pipelines or
interfaces to any knowledge base, we strongly recommend that initial develop-
ment and testing of each feature should be performed by software engineers in
a development environment. Once this preliminary stage is complete, all code
changes should then be merged and re-tested as a whole on a test database,
which is effectively a copy of the main, ‘live’ production database. The produc-
tion database is most important because it is here that new data is loaded from
external collaborators and where curators add and edit data; it is therefore impor-
tant that the integrity of this database is always intact and rigorous testing of all
code has taken place. In the event that data or code in this database becomes
corrupted, backup and recovery strategies should allow rollback of the database
to any point in time, reducing the likelihood of data loss.

4.4.3 Implementation of interfaces

The data contained in biological knowledge bases can be presented to end users in
a variety of ways, and different users may prefer different methods of access. The
most basic interface would be a dumping out of the contents of the knowledge
base into a delimited, flat-file format and presenting it for download from an
FTP site or similar. While this is relatively easy to do, the data provided in this
way are not particularly easy to manipulate or query. As a result, knowledge-
base teams may find that users begin requesting the production of multiple,
different file formats which essentially contain the same data but organized in
subtly different ways. This has an obvious maintenance overhead. However, if
the flat file structure is formatted appropriately, such as in a recognized standard
XML format, it should be possible to also provide indexing capabilities on the
file(s) in order that appropriate data may be retrieved. A drawback to allowing
users to download data locally is that there are potential difficulties keeping the
data synchronized. As we discuss later in the chapter, a way to avoid this is by
providing programmatic and graphical user interfaces to the knowledge bases, so
that data is pulled directly from the database.

UniProt data can be downloaded via FTP in various formats including XML,
RDF, fasta and flat file. In order to process the information contained in these
formats, the users need to write a parser that translates the input into suitable data
structures. Furthermore, data format changes within UniProt can lead to signifi-
cant maintenance overhead. In order to facilitate access to our data, we maintain a
number of programmatic interfaces which include protocols using the open stan-
dards REST and SOAP (Web services), Java applications (for example, UniProt-
JAPI (Patient et al., 2009)) and database federation approaches (such as BioMart).
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The UniProt REST interface (www.uniprot.org) provides access to UniProt
data, as individual records and queries, in a simple and consistent URL schema,
and returns appropriate content type headers (e.g., application/xml for XML
resources) and response codes. All URLs can be bookmarked and linked, allowing
the user to obtain the most recent information available at the time.

UniProt data is also delivered through SOAP (www.w3.org/TR/soap/)
services for both database information retrieval and sequence analysis. The
Web services technology used in UniProt is built in open standards (SOAP as
the messaging protocol for transporting information; WSDL (www.w3.org/TR/
wsdl) as the standard method for describing the Web service; and UDDI
(www.uddi.org/specification.html) as the platform-independent XML-based
registry for services). Information about these services can be accessed from
www.ebi.ac.uk/Tools/webservices/ (Labarga et al., 2007).

UniProt provides a Java application programming interface (UniProtJAPI)
that allows remote access for Java applications processing UniProt and related
data, such as scores and start and end positions of the signatures in InterPro. This
API (Application Programming Interface) represents each UniProtKB record as
a Java object and provides methods to access all of its information. For example,
getDescription().getProteinName() returns the protein name associated
with this entry. The UniProtJAPI also provides the ability to perform text and
sequence similarity searches across this data, allowing users to access a single
database entry with a given accession number, or whole entry sets matching a
defined criteria.

4.5 Updating of knowledge bases

The release cycles of bioinformatics knowledge bases can vary in length from
a matter of weeks to annual updates. Multiple factors can influence a release
cycle, but the biggest factor by far is the availability of the data that populates
the knowledge base. In this section, we outline how data in these databases is
maintained by a variety of processes, each with its own advantages and draw-
backs; a variety of approaches being required due to the changing nature and
volume of the data that is captured and stored.

4.5.1 Manual curation and auto-annotation

Although centralized sequence repositories are an essential means of providing
a user with the sequences themselves as quickly as possible, it is clear that
associating additional information with a sequence greatly increases the scien-
tific value of the resource. UniProt has earned an international reputation for
high-quality manual and automated annotation of protein sequences. Manual
annotation is a slow and labor-intensive process and is generally the rate-limiting
step in the production of any curated biological database. Curation of protein
sequences aims to enrich basic sequence data with additional information from
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a wide range of sources such as the scientific literature and specially selected
high-quality sequence analysis tools. Proteins for which there exist published
functional, biochemical, and/or structural data are the main targets for manual
annotation. Curators add knowledge-derived information such as protein function,
biologically relevant domains and sites, post-translational modifications, the sub-
cellular location of the proteins and their complexes, developmental- and tissue-
specific expression levels, splice-variant isoforms, and the publications used in
the annotation process. These manually annotated protein sequences constitute
the ‘reviewed’ section of the UniProt Knowledgebase (UniProtKB/Swiss-Prot).

Since the number of protein sequences continues to grow exponentially,
sophisticated computational techniques are employed for their analysis, in par-
ticular for sequences that have not yet been manually characterized. Many of the
automatic procedures used in community annotations are based on sequence sim-
ilarity searches using tools such as BLAST (Altschul et al., 1990). An alternative
approach is to use protein signatures, such as those included in InterPro, which
allow the identification of distant relationships to novel sequences, and hence the
prediction of protein functions and structure. Often, multiple methods are com-
bined together in annotation pipelines. All of these methods increase the amount
of information associated with proteins, and provide a rapid, automated means
of analysis, however, they all rely on the availability of accurately annotated
sets of reference proteins from which to make predictions. Manual annotation is
thus essential, not only to provide high-quality information to database users, but
also to supply accurate information on which automated methods can be based.
Thus, the combination of manual curation and automated methods is essential for
providing high quality functional annotation to an increasing number of proteins.
This remains the core of UniProt annotation activities.

The automatic annotation system developed in UniProt is based upon rules
derived from the combination of (1) a protein family classification provided by
the InterPro protein family and domains database, and (2) published experimen-
tal data, which is incorporated in the manually annotated section of UniProtKB,
UniProtKB/Swiss-Prot. The use of protein family and domain classifications
allows the characterization of proteins that are difficult to identify when using
pair-wise alignment methods. It also provides an effective means to retrieve rel-
evant biological information from vast amounts of data as well as reflecting
underlying gene families. The analysis of these families is essential for subse-
quence comparative genomics and phylogenetic analysis. UniProtKB/Swiss-Prot
represents a rich and consistent source of standardized functional annotation for
the large unreviewed sections of UniProtKB: UniProtKB/TrEMBL and UniMES.
A single annotation item (i.e., protein name, enzyme nomenclature, protein func-
tion or ontology relationships) can be triggered as a result of combining data
from different annotation sources (i.e., automatic annotation rules, PDB struc-
tures, model organism databases, etc.), and/or multiple annotation items can result
from a single annotation source. To distinguish all derived evidence of anno-
tations, it has been necessary to establish a methodological system of evidence
‘tags’, where the description of the annotation procedure is described. This system



100 KNOWLEDGE-BASED BIOINFORMATICS

of evidence tags is essential for the maintenance and updating of the database,
and to assist the end user with the interpretation of annotations contained within
the database.

Core to InterPro are the predictive signatures which classify protein sequences
into protein families and domains. Each member database is continually gener-
ating new signatures based on data being published in the literature and novel
sequences being deposited in the public domain. Update frequency can range
from every three weeks to yearly. InterPro is often sent a pre-release of data, so
that it can be prepared for inclusion into the resource and released to the public
as quickly as possible.

Data provided by constituent InterPro member databases can vary consid-
erably. Most obviously, the types of models which make up the predictive
signatures and the associated data for interpreting results from these models (sig-
nificance cut-offs, for example) are different from one database to the next. The
breadth of annotation provided by member databases ranges from very limited
(an identifier and model) to detailed (some databases provide in-depth annotation
of the families and/or domains that they are modeling, with literature references
and Gene Ontology terms included). InterPro also extracts relevant data from
related databases. For example, in addition to the protein sequences themselves,
information regarding the taxonomic spread of proteins in a particular InterPro
entry must be extracted from UniProtKB and loaded into InterPro. Similarly,
structural data is taken from wwPDB and utilized in InterPro entries, as is data
regarding enzyme classifications (EC), where appropriate. All of these disparate
data sources must then be molded into a consistent, high-quality set of annotation
by the InterPro curation team and the database’s pipelines.

In order to be included into InterPro, a signature has to be considered bio-
logically significant by an InterPro curator (i.e., it is representing a ‘real’ protein
family rather than a similar set of sequences). This decision is taken by a curator
who then additionally checks whether or not a signature is similar to anything
already in InterPro. If it appears that two signatures are representing the same
entity (a functional domain, for example), they are placed into the same entry.
If a signature does not resemble any existing InterPro entry, a new entry will be
created for it. If the signatures of an entry match a subset of proteins compared
to another, such as when a more specific sub-family has been described, in this
case, the entries are related to each other in a hierarchy called ‘parent-child.’
A descriptive abstract and name for the entry are written by curators and, if
possible, Gene Ontology (GO) terms are mapped to it.

In order to be able to process the deluge of data, the curation process in all
knowledge bases therefore needs to be intuitive and (consequently) efficient.
InterPro and UniProtKB both provide powerful GUI-based curation tools
which allow the speedy update of data in their respective repositories. Where
possible, tasks are automated. For example, in UniProtKB, there are various
macros – recorded procedures associated with keystrokes – which the curators
can use to quickly short-cut to a particular functionality in the tool. In InterPro,
prediction of certain data items, such as an abbreviated name, is performed to
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allow the curator to accept or edit the suggested information. Visualization tools
showing the relationships between data in InterPro are also used by curators
when they are making decisions about how to enter data into the database or
assess its quality.

4.5.2 Clever pipelines and data flows

There are two scenarios to consider when dealing with a multi-source database:

(1) The design of clever pipelines and schemas that can accommodate different
sources of conceptually identical data types.

(2) The implementation of an update mechanism that allows multiple pro-
cesses to modify the data independently.

There are two good examples of such multi-source databases in UniProt. Uni-
Parc is an archive of all protein sequences – including new and revised protein
sequences – from many public sources, including UniProtKB and various exter-
nal sources, such as DDBJ/EMBL/GenBank CDS translations, RefSeq protein
sequences, Ensembl predicted proteins, PDB protein sequences, protein sequences
in patents, and other protein data (see Figure 4.3). It offers a single point of entry
that allows access to all versions of sequences previously and currently available
from the protein databases.

UniProtKB

UniMESUniRef

UniRef100

UniParc – Sequence archive
New, revised and obsolete sequences

UniProtKB/Swiss-Prot

UniProtKB/TrEMBLUniRef90

UniRef50

Protein Knowledgebase

Sequence clusters
UniMESReviewed

Unreviewed

Expert manual annotation
Automatic
annotation

Metagenomic and
environmental
sequences

Clusters

Clusters 100

Clusters 90

EMBL/GenBank/DDBJ (Metagenomics), Ensembl, VEGA, RefSeq, PDB, MODs, other sequence resources

Figure 4.3 Schematic of the UniProt set of knowledge bases.

Populating a database with all protein sequences would potentially lead to
a huge amount of data redundancy, since the same sequence could be found in
multiple sources (UniProtKB, RefSeq, PDB, etc.). However, in UniParc, each
unique sequence is assigned a unique identifier (UPI) and is stored only once.
The basic information stored with the UPI and the sequence is a checksum (both
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CRC64 cyclic redundancy check and MD5 numbers are stored internally and
are used as a hash-key to speed up the identification of unique sequences); the
accession number(s); version number(s); source database(s); and a time stamp. In
this way, the UniProt Archive overcomes the unsatisfactory situation that arises
when there is no single point of entry that allows access to all the available
versions of protein sequences that occur in a variety of source databases, and
leads to sequences being not easily traceable across databases. In essence, the
UniProt Archive acts as a basic ‘translation hub’ indicating which sequence
corresponds to which identifier in various databases.

Three basic aspects of the technical implementation of the UniProt Archive
are of central importance:

• The hash coding of sequences to efficiently determine if a given sequence
is already present in the archive.

• The assignment of increasing alphanumeric ID values to incoming
sequences to guarantee that the archive’s IDs preserve a chronological
order.

• The immutability of the archive; making sure that sequences, once archived,
cannot be deleted and inserted again into the archive under a new ID.

Every sequence that is imported into the archive receives a unique identifier
and a hash value based on the CRC64 algorithm. Most proteins are guaranteed
to receive unique checksums because only one collision of hash values can be
expected in a database containing 2.3 trillion sequences. Nevertheless, for every
sequence sharing the same CRC64, additional string matching of the hashed
sequence is performed to ensure that these sequences are really the same. In
the rare cases where sequences in the archive are mapped to the same CRC,
they will get different UniParc identifiers as a consequence of the above check.
Cryptographic hash functions, such as MD5, are increasingly being used in place
of CRC64 as collisions are more unlikely for the same size of sequence database.

The immutability of the archive guarantees that a sequence, once archived,
will have a stable identifier that is valid once and forever. A sequence will still
exist in its original form in the UniProt Archive, even if the source sequence
in, for example, WormPep has changed. The changed WormPep sequence will
also enter the archive, but the change in sequence will lead to a new CRC64
hash value, and thus a new unique UniProt Archive Sequence Identifier will
be assigned. The status of a sequence in the source database (i.e., whether the
sequence still exists or has been deleted) is indicated for each source sequence
record. These features of the archive allow us to use the UniProt Archive as a
versioning server to retrieve ‘historic’ sequence data, which is particularly impor-
tant in the context of patent claims. The incremental order of the ID numbers
allows sequence-based computational analysis tools to perform a comparison of
two identifiers using a relational operator and determine which is more recent
(i.e., UPI0000123A > UPI00000456 will return ‘true’).
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The immutable and sequential nature of UniParc is also exploited by the
pipelines within InterPro. A significant proportion of the data in InterPro is cal-
culated automatically by a tool called InterProScan, which searches member
database signatures against protein sequences. InterProScan is implemented as a
modular pipeline, which takes multiple sequences as input, uses the searching
software associated with each member database to look for matches of signatures
to these proteins, and filters the output according to various significance criteria,
such as e-values. A schematic of how InterProScan works is shown in Figure 4.4.
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Figure 4.4 Schematic of InterProScan architecture. Results from the search algo-
rithms are typically stored in raw data ‘staging tables’ in an Oracle database. The
entire output from the search is then post-processed (i.e., cut-offs applied, etc.)
altogether and persisted in a final set of main database tables. Not all searching
algorithms are displayed in the diagram due to space limitations.

In order to keep the complement of all signature matches against all protein
sequences up to date, InterProScan uses the sequence versioning capabilities of
UniParc to ensure that only completely new sequences are calculated against the
signature databases. The reason for this is that the majority of algorithms cur-
rently used within InterPro are relatively computationally expensive. To search an
average-length protein sequence against an average-sized hidden Markov model
(HMM) using the HMMER algorithm (v.2.3.2) takes around two seconds. This
may not seem like a long time; however, when one considers that the size of
UniProt is nearing 10 million proteins, and InterPro contains over 50 000 HMMs
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at the time of writing, the problem begins to look a little more daunting! Using
the archive, it was possible to reduce the number of calculations by being care-
ful to only recalculate data when the sequence and/or the model or algorithm
had changed. Looking again at the diagram of InterProScan, one can see that
the initial, compute-intensive, algorithm search step is completely divorced from
the processing and filtering steps that further refine the raw results from these
searches. By storing the raw results and only recalculating them where absolutely
necessary, we estimate that we have saved many thousands of compute hours
on our local cluster. Being able to generate this data as quickly as possible is
critical if we are to have a sensible release cycle.

4.5.3 Lessening data maintenance overheads

To overcome the problems of inconsistent data formats and types it is a good
idea for collaborators to agree upon a standard format for data exchange. There
are many worldwide consortia that have done this in order to ease movement
of data between their repositories (e.g., the MIAPE standard for proteomics data
exchange (Martens et al., 2007)). In InterPro it was agreed that all core informa-
tion contained within InterPro member databases that were in common should
be inventoried and that a model which represented this information would be
designed. From this model, it would be possible to easily transform data from one
format (e.g., objects in a database) to another (e.g., an XML file for exchange with
others). By doing so, the amount of time and effort required to maintain update
pipelines is reduced because a single format means a single pipeline is needed.

A way to minimize the effort of maintaining and updating data and make
the process simpler is to pull in data from remote services, rather than try-
ing to federate information locally. DAS (Distributed Annotation System) (Prlic
et al., 2007) is a client-server system in which a single client is able to inte-
grate information from multiple, disparate servers. It allows producers of data to
expose the contents of their repositories in a standardized and easy-to-discover
fashion. The protocol itself is very simple and requires very little data download
from the server to the client site.

The DAS route is used by UniProtKB to allow better exploitation of its data
by other databases and to facilitate other groups’ contribution of information
to UniProt. The UniProt DAS server allows researchers to show their research
results (for example, identified peptides or signal sequences) on the UniProt ref-
erence sequence server, in the context of UniProtKB annotation. This approach
is more tailored towards Bioinformatics groups or labs with sufficient bioinfor-
matics support.

The UniProt DAS Reference Server (www.ebi.ac.uk/uniprot-das/index.html)
provides sequence and feature data from UniProtKB as well as sequence data
from UniParc and IPI (International Protein Index; Kersey et al., 2004). The
server can be queried using any of the following:

• UniProtKB Accession numbers; for example, O35502.
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• UniProtKB IDs; for example, A4_HUMAN.

• IPI IDs; for example, IPI00015171.

• UniParc IDs; for example, UPI0000125656.

Besides UniProtKB, many other knowledge bases expose their data in this way,
including InterPro and its member databases, Ensembl, PDB and model organ-
ism databases.

4.6 Conclusions

This chapter has described how the changes to the biological data landscape have
impacted on how knowledge bases have developed over the past decades. There
is no doubt that the factors we describe – the volume and complexity of these
data – will continue to shape the architecture design choices that are made for
many years to come. A key challenge for bioinformatics in these coming years
will be to harness new, appropriate technologies in order to ensure that the capture
of data and its provision to the public does not lag behind advances in biology.
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Classical statistical learning
in bioinformatics

Mark Reimers

5.1 Introduction

Biology has been changed dramatically in the past decade by the emergence
of powerful high-throughput assays, such as microarrays and highly parallel
sequencing. These methods have brought issues of data analysis from the wings
to the forefront of biology. In reciprocity, the research agendas of statistics have
also been dramatically changed by the advent of high-throughput genomics. At
recent Joint Statistical Meetings many of the applied sessions focused on high-
throughput genomic data, and many of the theoretical discussions focused on
‘Large P – Small N’ problems, where there are many more variables than mea-
sured samples, which is now the norm in genomic data analysis.

As in any new field there are many claims. However, in many cases the
important questions to ask about a new method are classical statistical questions;
for example, how much evidence is there for apparent structure in the data? How
can the accuracy of classification be tested using only a limited sample? These
kinds of classical questions will inform this brief guide to classical statistical
learning in bioinformatics.

5.2 Significance testing

The oldest form of statistical learning is deciding whether a particular measure
differs between the populations from which two samples have been taken. Here

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
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I will assume that the reader has a basic grounding in statistics and discuss some
issues peculiar to high-throughput data analysis.

5.2.1 Multiple testing and false discovery rate

Most genomic researchers compare many genes or loci across a set of sam-
ples; therefore multiple-comparisons issues come up immediately. Suppose that
a researcher assays 20 000 gene expression levels between two conditions that
(unknown to the experimenter) actually do not differ at all. If the researcher
performs a t-test at a significance level of 1% then he or she might expect to
find 200 genes that appear significant at a 1% threshold. However, suppose that
the researcher anticipates this problem, and performs the test at a much stricter
threshold, at which he or she might expect to find fewer than one false positive,
for example a threshold of p < 10−5; then the researcher is likely to find no
significant changes at all, even when real differences exist, because the typically
small sample sizes employed in genomic experiments make it difficult to achieve
very large t-scores. A considerable statistical industry has sprung up addressing
this dilemma. Let’s start with a few definitions.

5.2.1.1 Definitions

The Null (default) Hypothesis about a gene is that no change occurs in that gene
across the populations that are being compared. Suppose that genes are numbered
1 through M , and we denote the corresponding Null Hypotheses for each gene by
H1 through HM . We suppose that M0 < M of these Null Hypotheses are actually
true (i.e., no real differences in those genes). Table 5.1 will help keep track of
the numbers.

Table 5.1 Symbols for how testing results come
out in one experiment.

Hypotheses Accepted Rejected Number

True U V M0
False T S M − M0

W R M

The number of null hypotheses rejected wrongly (‘false discoveries’) is here
denoted by V and the number of rejected null hypotheses is denoted by R. Note
that R is determined by the data and the testing procedure, and is known after
each experiment, but that S, T , U , and V are all unknown values, which may
vary from experiment to experiment, while M0 is a fixed number, depending
on the experimental question, although the true value of M0 is unknown to
the investigator.
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We distinguish two types of errors:

Type 1: false positives; when a true null hypothesis is rejected.
Type 2: false negatives; when a false null hypothesis is retained; that is, a true

difference is not discovered.

Most testing procedures try to guarantee an upper bound on Type 1 errors, while
keeping Type 2 errors to a minimum.

For any testing procedure, we may think about the false positive rate in
several ways:

(1) The family-wise error rate (FWER) is the probability of (at least) one
false positive somewhere among the R genes which appear significant:
FWER = P(V > 0); this can often be calculated from first principles.

(2) The false discovery rate (FDR) is the expected proportion of false posi-
tives among the R selected genes: FDR = E(V/R), over many runs of
the same experiment; this can only be estimated from the data.

Definition (2) above doesn’t explicitly address how to handle the case when
R = 0 (and therefore V = 0), that is, when the testing procedure produces no
genes. There are two common approaches. The Benjamini and Hochberg (1995)
approach counts cases where no genes are selected as having a false positive
proportion of 0, in their sense. Storey (Storey and Tibshirani, 2003a; Storey
and Tibshirani, 2003b) argued that this is not what most people mean by FDR,
and that the expectation in definition (2) is meaningful only for R > 0, that
is, there are some genes selected by the testing procedure; in their definition
FDR = E(V/R|R > 0).

I agree with John Storey that his version of the FDR is closer to our intuitive
sense of false discovery rate. However, the Benjamini and Hochberg (BH) FDR
is easier to work with, both to develop theory, and to compute, and in my
experience the BH sense of FDR is more widely used (Reiner et al., 2003). The
relationship between estimates of these two versions of FDR is not always clear.
Since there is always some chance of coming up empty handed, the FDR in
Storey’s sense must logically be somewhat larger than the FDR computed by the
BH procedure. If a selection procedure identifies many highly significant genes,
the FDRs estimated by the two approaches turn out to be similar. However if
only a few genes are selected by a testing procedure, then the FDR in Storey’s
sense for that testing procedure will usually be much higher than the BH sense
of FDR, and there may be no genes at all selected at the same level of Storey’s
FDR (Storey and Tibshirani, 2003b).

5.2.2 Correlated errors

The commonly used BH procedure only guarantees that the average proportion
of false positives, over many repeated experiments, is bounded by the specified
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value. In practice the variability can be quite high. This is because in real data the
errors are correlated, so that false positives tend to occur in groups. Figure 5.1
shows that the actual proportion of false positives selected by the BH procedure
can be quite variable, in a simulation.
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Figure 5.1 Results of a 100-simulations study of the Benjamini–Hochberg pro-
cedure. One hundred out of 1000 variables were different between 2 samples of
10 each. The errors were correlated: one-third of the variance in errors was
accounted for by the first principal component. (a) Histogram of actual pro-
portions of false positives selected by BH procedure aiming for an FDR of 0.1
(10% – shown by dashed line). (b) Actual proportion of false positives plotted
against number of genes selected. The analyst might be inclined to think the
reverse of what actually happens.

5.3 Exploratory analysis

The aim of exploratory analysis is to uncover unexpected patterns or relation-
ships in data. In the jargon of machine learning, this is ‘unsupervised learning.’
Generally speaking, when a researcher has fairly substantial prior ideas about the
relationships to be expected among the samples or genes, the statistical techniques
of hypothesis testing are both more powerful and less prone to misinterpretation.

5.3.1 Clustering

Clustering has become the most widespread exploratory technique used in
genomic data analysis. The clustering habit goes back to the yeast cell-cycle
paper, Spellman et al. (1998), that brought genome-wide microarrays to the
attention of researchers. That paper used a high-dimensional clustering of
gene expression patterns to more than double the number of known cell-cycle
regulated genes. This signal success had the unfortunate side effect that,
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for several years thereafter many researchers felt compelled to cluster every
microarray data set. In recent years, however, researchers have recognized that
clustering is not the appropriate tool for all tasks, in particular not for identifying
genes differentially expressed between predefined conditions; clustering has
been used with more discrimination recently, and is no longer an obligatory
feature of all genomic papers.

Clustering was an appropriate methodology for the Spellman paper. Their
explicit aim was to identify groups of genes with similar expression patterns
across the cell cycle, and that is exactly what clustering does. Their research
premise was that specific transcription factors would activate modules of genes,
each module in turn turning ‘on’ as the cell cycle progressed. This type of
modular structure can readily be identified by cluster analysis.

The aim of clustering is to identify similarities in items on which a large num-
ber of variables are measured (see Chapter 12 of Johnson and Wichern (2007)).
Most people find it difficult to intuitively judge similarity based on multiple
measures, and clustering methods provide an objective method of aggregating
differences based on each variable measured into a single measure of dissimi-
larity between each pair of samples. Clustering may be performed on genomic
samples in order to identify subtypes among the samples; for example clustering
may be a first step towards identifying molecular subtypes of a disease such
as cancer, which is known to be heterogeneous (Perou et al., 2000), but whose
substructure is unknown.

Clustering may also be performed on genes, as in Spellman et al. (1998), for
discovering groups of genes with similar expression patterns across a wide range
of biological conditions. Note the requirement for a wide range of conditions;
clustering genes across a small number of conditions, or across many rather simi-
lar conditions, doesn’t give very distinct clusters, in my experience. Cluster anal-
ysis needs a large number of contrasting conditions to isolate distinct modules.

There are several types of clustering algorithm. Some methods assume a pre-
specified number of clusters, and try to fit each sample into one group. These
‘k-means’ methods, so called as they cluster all samples around k mean profiles,
are fast and easy to compute; therefore k-means methods are often used for
clustering large numbers of items such as genes or genomic measures. A common
alternative method is to aggregate individuals into small clusters, and then to
aggregate small clusters into larger clusters, and so on, to form a hierarchy of
clusters. This so-called hierarchical method is often used for clustering samples.

Clustering should be viewed as a heuristic tool, which is useful for suggesting
hypotheses, but clustering by itself does not quantify evidence to support these
suggestions. Furthermore, clustering involves a number of arbitrary choices, some
of which may drastically affect the resulting cluster diagram (Do and Choi, 2008;
Garge et al., 2005; Kerr et al., 2008). Most clustering software offers several
choices of distance metric; that is, how to summarize all differences between
items in a single numerical measure. Furthermore, hierarchical clustering offers
the user several choices of linkage; that is, what criteria to employ to join smaller
clusters into larger clusters.
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It is always possible to construct a clustering from any data set, and
researchers may be misled by apparent deep branches. The hierarchical cluster
diagrams in Figure 5.2 were constructed from completely random data with the
same distribution characteristics as microarray data (i.e., variation was described
by a t distribution with 5 d.f.). The diagrams were constructed from the same
set of random numbers, using two metrics to define distance: Euclidean (L2)

distance, based on the sum of squared differences, and Manhattan (L1) distance,
based on the sum of absolute values of differences. There are two apparently
distinct clusters in both versions; unfortunately they don’t agree on which items
belong together.
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Figure 5.2 The same (random) data set clustered using two different metrics.

This artificial example illustrates an important point about clustering. There
are many choices for clustering metrics, and in order to be confident that the
clusters are real, it is wise to try several choices. I find Euclidean, Manhattan,
and correlation1 distances to be the most useful. If the resulting cluster diagrams
are fairly similar, then the clustering is more likely to reflect real underlying rela-
tionships. In assembling a hierarchical cluster, I find complete linkage, average
linkage and Ward’s method to be the most useful.

Clustering can be reproducible: Figure 5.3 shows an example of real data
where the same two metrics give very similar deep branches. Note that the
leukemias cluster together and well apart from the other samples, as do the
melanomas, in both versions of the clustering, but the relationships within these
groups appear to change between versions.

1 The correlation distance is defined as 1 − r(x, y), where r(x, y) is the correlation between two
items x and y. This distance is insensitive to changes of scale, and so is particularly useful if a
researcher suspects normalization problems in data.
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If a striking clustering appears, most researchers want more objective
evidence to validate that clustering. Here a silhouette score is useful. A
silhouette score measures how close are items within each cluster to each other,
relative to distances between items in different clusters. Another approach is
to ‘bootstrap’ the clustering. The idea is to ask whether a particular cluster
depends on only one feature or on many. To check this, one may resample from
the variables at random and rebuild the clustering based on only those selected
variables, repeating both steps many times. If almost all the resulting clusters
share a particular branch, then that branch is regarded as fairly well attested.

For all the effort spent on validating clusters, it is not uncommon to find that
samples cluster by date of array preparation or by technician. In my experience
these kinds of artifacts seem to show up more often when using the Manhattan
metric. Principal components analysis (see below) also frequently arranges items
by technical covariates rather than real biology.

5.3.2 Principal components

Principal components analysis (PCA) is another valuable exploratory tool, as is
the closely related technique of multidimensional scaling (Johnson and Wichern,
2007; Mardia et al., 1979). PCA constructs synthetic variables (components)
as linear combinations (sums of multiples) of the measured variables, in order
that the values of a small number of these synthetic variables can efficiently
encapsulate most of the values of the measured variables across all the samples.
The multiple of a gene measure that occurs in the sum for a particular component
is called the loading of the component on that measure.

Sometimes PCA uncovers processes which coordinate several genes across
the samples. In many cases, the first few components are linear combinations
of gene measures heavily loaded on a distinct small subset of the genes; then
there may be a ready biological interpretation to those components. Just as often
the components are linear combinations with small loadings on a large num-
ber of measures, and these combinations have no easy biological interpretation.
Furthermore PCA is not a robust technique; that means the results are easily
distorted by a few outliers in data. One ready sign of outliers driving the PCA
is a principal component which has large loadings for only one or two genes, or
has large values in only one or two samples.

Even if there are no outliers, a researcher should think critically about the
meaning of PCA results. A biologically meaningful component usually loads
heavily on a relatively small subset of gene measures; furthermore, two dif-
ferent biologically meaningful components don’t usually depend heavily on the
same genes. A useful heuristic is to plot the loadings of different components
against each other. A plot that looks like ‘blob’ usually suggests difficulty of
interpretation. Figure 5.4 illustrates easy and difficult interpretations.
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Figure 5.4 Plot of loadings of the first two principal components (PCs) from
analysis of a subset of NCI 60 data. The second PC probably reflects some
identifiable biology, since there are a few dozen genes which load heavily
on PC2 but have almost no loading on PC1. The first PC may or may not
reflect real biology – but compare Figure 5.5, which suggests that the first
PC distinguishes leukemias from other samples. This data was obtained from
http://discover.nci.nih.gov/datasets.jsp.

5.3.3 Multidimensional scaling (MDS)

There are several MDS techniques, and they aim to do much the same thing as
PCA but more flexibly and for more types of data. MDS techniques differ from
PCA in allowing a researcher to represent data for which Euclidean distance is
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not a meaningful measure of differences between samples (Johnson and Wichern,
2007). Furthermore, some variants of MDS allow one to iteratively improve a
graphical representation beyond what PCA can achieve. The price for this added
flexibility is that the synthetic variables constructed by MDS techniques are not
related in any simple way to the original variables, and so it is often hard to
interpret an MDS diagram. In practice MDS is often used as a kind of graphical
clustering, which is useful for suggesting unsuspected relationships, but is not a
precise representation.

Figure 5.5 shows an MDS plot for the same subset of the NCI 60 expres-
sion data, whose loadings are shown in Figure 5.4. We can see that mostly
the leukemias and melanomas segregate nicely from the epithelial tumors, and
within the epithelial tumors, the colon cancers are pretty distinctive, but that
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Figure 5.5 MDS plot of a subset of the NCI 60 data. The horizontal axis corre-
sponds to the first PC; that component seems to distinguish blood-derived cancer
cell lines from the others. The vertical axis corresponds to the second PC; that
component seems to distinguish melanomas from the others, and represents coor-
dinated expression of relatively few genes, as shown in Figure 5.4. Symbols: LE,
leukemia; ME, melanoma; CO, colon; RE, kidney; LC, lung cancer.
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the overall gene expression profiles of the lung tumors are not very distinct
from those of the kidney tumors. In fact the other major epithelial tumor types
in the NCI 60 – ovarian and breast (not shown) – also mix in on these broad
dimensions. We see one puzzle: one of the melanomas seems indistinguishable
from the epithelial lines at coordinates (10, 0). That cell line is LOX-IMVI; in fact
LOX-IMVI doesn’t express TYR, which is a distinctive marker of melanocytes,
and so this cell line may very well be misclassified.

Recall that PCA doesn’t handle skewed data very well. An alternative tech-
nique known as independent components analysis (ICA) is specifically designed
to deal well with skewed data (Hyvärinen et al., 2001). ICA differs from PCA in
that linear combinations are sought that are uncorrelated but also are statistically
independent, which is often not the case in PCA. Frequently the component val-
ues are skewed rather than Normal. This approach may work well when there
are very distinct sets of genes up-regulated in distinct conditions. A nice example
used the cell-cycle data (Lee and Batzoglou, 2003), where distinct groups of genes
are expected to be very high for brief periods, so that a skewed distribution of
the components would be expected.

There are other methods related to PCA, but which are more resistant to
outliers, for instance Croux et al. (2006). In my opinion these other methods
deserve more attention than they have received so far.

5.4 Classification and prediction

A common goal of clinical microarray studies is to predict clinical outcomes from
genomic measures. In many recent clinical studies, researchers have employed
modern machine learning (ML) algorithms, often methods developed or refined
just a few years previously. However, there is a long tradition in statistics of pre-
dicting outcomes using multiple predictors. The advantage of many ML methods
is that they are designed to work efficiently with large numbers of predictor
variables. In contrast, most classical statistical procedures work efficiently with a
modest number of variables and classical procedures struggle to sort out relation-
ships among enormous numbers of variables. On the other hand, some caution
about ML is needed, since many ML procedures were originally designed for
data sets with very large numbers of samples. Most microarray studies have far
fewer samples and far more variables than many ML methods were intended to
handle. There is as yet little statistical theory for ML methods in this ‘large P,
small N’ situation (many predictors but few samples). Although ML methods
may get answers quickly, it is hard to assess their significance. It is quite easy in
practice to ‘over-fit’ data using ML methods, resulting in excellent predictions
on existing data but poor predictions on new data. On the other hand, most clas-
sical statistical algorithms have internal measures to help assess their predictive
accuracy beyond the training sample (Hastie et al., 2001). A general approach to
reduce the danger of over-fitting is cross-validation, which will be discussed later.
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5.4.1 Discriminant analysis

The classical statistical approach to discrimination and class prediction was
introduced by R. A. Fisher as early as 1936 and is known simply as discrimi-
nant analysis (DA). Fisher’s original idea was to choose a linear combination of
predictors to maximize the difference of that linear sum between classes relative
to its variance within classes. Later he and others developed a theory that justi-
fied his original idea, and incidentally gives us some guidance about when this
approach works well and when it does not.

For variables x1, x2, . . . , xM , a discriminant function L has the form

L = a1x1 + a2x2 + · · · + aMxM + c. (5.1)

Where a1, a2, . . . , aM are the weights for the variables x1, x2, . . . , xM . The aim
of DA is to pick the values for the ai , and for c so that the values of L are
negative for one class and positive for another class, as much as this is possible.

In practice, DA does well when the following assumptions are true: for both
classes, the joint distribution of the values of the variables xi is a multivariate
Normal distribution, and within both classes separately, these variables have the
same covariance matrix. For such a situation one can show that DA is the most
efficient method for discrimination. However, genomic data rarely satisfy these
conditions in practice. Most commonly, the covariances of the observed measures
differ between the two classes, especially when comparing diseased to normal
samples. Furthermore, genomic data often depart from the Normal distribution in
ways that compromise multivariate theory. For example, among cancer samples
the variances of individual genes are much larger than among normal samples,
and the distribution of the values is skewed to the right (i.e., large outliers).

In principle the issue of different covariance matrices among the different
classes could be addressed by estimating the two covariance matrices separately,
employing a so-called Quadratic Discriminant Analysis (QDA). However, in the
‘small N large P’ situation, the estimates of covariance matrices are unstable, and
in practice this technique doesn’t perform well on genomic data, and is therefore
rarely used.

5.4.2 Modern procedures

The so-called ‘Naı̈ve-Bayes’ method is one of the oldest and simplest forms of
ML, and often outperforms more sophisticated methods on complex problems.
The key idea is to compute the distributions of all variables for each class, then to
multiply the densities of these distributions, as if the variables were independent,
to come up with an estimated joint distribution of all variables, for each class.
Then if the values of the variables are known, the probabilities of classes can be
computed by applying Bayes’ rule. In practice the measured variables are usually
not independent, but this classifier does surprisingly well nevertheless.

If all the variables are distributed Normally, the Naı̈ve Bayes approach to
classification turns out to be equivalent to the simplest form of discriminant
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analysis, in which each variable is independent. Why does this simple approach
work? In the small N large P situation, in high dimensions, the estimates of
covariance are very inaccurate; it seems that with small sample sizes the typically
large errors in covariance estimates render these estimates more misleading than
helpful. A helpful compromise, which has become more popular recently, is to
address this problem by blending the estimates of the covariance matrix with the
identity, weighting the estimated covariance more if there are a large number of
samples (Hastie et al., 2001).

5.4.2.1 Support vector machines

One new ML method now in the spotlight is Support Vector Machines (SVMs;
Cristiani and Shawe-Taylor, 2000); the word ‘machine’ in the name might be
better rendered ‘mechanism’ or ‘algorithm.’ This approach has the potential to
improve on the classical technique of discriminant analysis by using nonlinear
combinations of measured predictive variables, hence giving a more complex and
flexible repertoire of ways to separate the two groups. However, this very flexi-
bility raises the possibility of over-fitting. Nevertheless, anecdotal reports suggest
that the SVM approach can be made quite competitive with modern statistical
methods in many situations, and seems to work better than classical methods in
situations where the predictive data are quite sparse (most observations are 0).

It is not easy to figure out the theory behind the SVM approach; the argu-
ments embrace finiteness and eschew the idealization and asymptotic analysis that
characterizes so much of classical statistics. The theory for SVMs is not much
use in practice as the theoretical bounds are too big to be useful (Cristiani and
Shawe-Taylor, 2000). One sometimes hears that SVMs beat the ‘curse of dimen-
sionality’, but this is not really true (Hastie et al., 2001). That is, SVMs allow
convenient mechanisms, in the form of kernel functions, for picking represen-
tations in higher dimensions, which are indifferent to dimensionality. However
these kernel functions don’t provide a magic bullet to select distinct appropriate
scales for individual variables, which is where the curse of dimensionality really
bites. In my opinion the value of SVMs comes when most variables can affect
the outcome, but only a few do in any one instance, which often is the situation
with sparse data.

Most modern ML procedures are very flexible, as are SVMs, and they can
produce plausible models for pure noise. A conscientious researcher must be con-
cerned with how to avoid exaggerated claims. A practical method for assessing
the reliability of any predictive machine learning algorithm is cross-validation.

Cross-validation proceeds as follows:

(1) Hold back some subset of the data (say 10% or 20%).

(2) Perform the machine learning or statistical procedure on the remaining
data.

(3) Predict the outcomes for the data that are left out.
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(4) Compare the predictions of (3) with the actual (known) outcomes.

(5) Repeat steps 1–4 for many subsets left out, recording the correct predic-
tions at each iteration.

(6) Characterize the overall predictive accuracy.

Many ML methods have tuneable parameters; the cross-validation procedure
enables one to make a plausible choice of these parameters, by cross-validating
with many choices of these parameters, and then picking the parameters with the
best cross-validation score.

It is sometimes misleading to compare the accuracy of a ML procedure on
two different data sets with different proportions of categories or outcomes, using
as a measure the proportion correct. For example, if one data set is split 50 : 50
between two categories and another is split 90 : 10, it will be easy to obtain 90%
accuracy on the second data set, simply by guessing the first category every
time. A better measure of how much the ML procedure does for the problem
is to compare the accuracy to the best accuracy achievable by chance. A good
statistic for this is Cohen’s Kappa.

Statisticians are enthusiastically addressing these issues right now, and I
anticipate a convergence of machine learning with statistics, embracing classical
statistical concerns with random fluctuations. Many modern statistical procedures
use regularization, by imposing a cost for complex predictors to limit the range of
possible predictor functions. A very clear introduction to these issues is provided
in (Hastie et al., 2001).
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Bayesian methods in genomics
and proteomics studies

Ning Sun and Hongyu Zhao

6.1 Introduction

Bayesian methods have become widely adopted in bioinformatics in recent years,
thanks to their many advantages over frequentist-based methods. First, they offer
an intuitive approach to incorporating prior biological knowledge in data analysis
and interpretation. Second, different types of genomics and proteomics data can
be integrated in a principled fashion under a consistent modeling framework.
Third, many Bayesian computational tools that have been developed over the past
30 years are readily available to complex models for genomics and proteomics
data that are difficult to deal with from a frequentist perspective. In addition
to numerous journal articles published on Bayesian methods for computational
biology problems, several books dedicated to Bayesian models in bioinformatics
have appeared, for instance Dey et al. (2010), Do et al. (2006), and Mallick
et al. (2009), as well as tutorials (Wilkinson, 2007). In this chapter, we start with
a discussion of the fundamental Bayes theorem and several simple examples
of how it can be applied to study some biological problems. We then cover
several more complex problems that have benefited from Bayesian modeling
and analysis. We conclude this chapter with references to other problems that
Bayesian methods have been applied to, potential issues in Bayesian methods,
and books that are commonly used in the teaching of Bayesian methods.

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
 2010 John Wiley & Sons, Ltd
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6.2 Bayes theorem and some simple applications

The Bayes theorem underlies all Bayesian methods. It is generally introduced in
most probability and statistics textbooks in the following form: P(B|A) = P(A
and B)/P(A), where A and B represent two events, P(B|A) is the conditional
probability that B occurs given that A has already happened, P(A and B) is
the joint probability that both A and B occur, and P(A) is the unconditional
(marginal) probability that A occurs. When events A and B are independent,
that is, P(A and B) = P(A)P(B), then P(B|A) = P(B). The value of P(B|A)/P(B)
characterizes the degree of dependency of event B on event A. Let us first
consider a simple example using the Bayes theorem. If we are interested in the
dependency of the neighboring nucleotides in a genome, event A may correspond
to a base being a specific nucleotide, say ‘C,’ and event B may correspond to the
next base being a specific nucleotide, say also ‘C.’ Suppose that the proportion
of bases in this genome being ‘C’ is 0.25, that is, P(A) = 0.25, and the propor-
tion of two consecutive bases being ‘CC’ is 0.10, that is, P(A and B) = 0.10.
Then P(B|A) = P(A and B)/P(A) = 0.10/0.25 = 0.4. Therefore, P(B|A)/P(B) =
0.4/0.25 = 1.6; that is, having a base being ‘C’ increases the probability of the
next base being ‘C’ by 60%. In this case, knowing that the previous base is ‘C’
(prior information) affects the chance that the current base is ‘C.’

For a second example, we consider the inference of the ethnic origin of an
individual based on genetic marker information, which is commonly encountered
in genetics or forensic studies. For example, we may collect genetic markers at
a number of single nucleotide polymorphisms from an individual and use these
markers to infer whether this person is a Caucasian or an African. In this case,
event B is the ethnic origin of this individual, and event A is the genetic marker
data for this person. To solve this problem, we can apply the Bayes theorem
as follows:

P(an individual is a Caucasian|marker data)

= P(an individual is a Caucasian and marker data)|P(marker data)

= P(an individual is a Caucasian)P(marker data|an individual is

a Caucasian)|P(marker data).

We note that we have used the following results:

P(B|A) = P(A and B)|P(A) = P(B)P(A|B)/P(A)

above; that is, we used the Bayesian theorem twice with one conditional on A and
the other conditional on B. There are three quantities that need to be evaluated in
this formulation: P(an individual is a Caucasian), P(marker data | an individual is a
Caucasian), and P(marker data). The information about the value of P(an individ-
ual is a Caucasian) often comes from the knowledge on the general population
where this individual is sampled from, therefore some injection of prior
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information in this calculation. To calculate P(marker data|an individual is
a Caucasian), we need information on the properties of the markers in a
Caucasian population, such as allele and genotype frequencies. Again, some
prior knowledge about the markers is needed in this calculation. Lastly, to
calculate P(marker data), we need to sum over all possible ethnic origins for
this individual. In the case of two origins, for instance Caucasian and African,
we can calculate P(marker data) as

P(marker data)

= P(an individual is a Caucasian and marker data)

+ P(an individual is an African and marker data)

= P(an individual is a Caucasian)P(maker data | an individual

is a Caucasian) + P(an individual is an African)P(marker data|
an individual is an African).

We may consider P(an individual is a Caucasian) as the prior information
about the ethnicity of a sampled individual in the population being studied, and
P(an individual is a Caucasian|marker data) as the posterior probability for this
person’s ethnicity after we collect the relevant information about this individual,
that is, genetic marker data. Therefore, the Bayes theorem offers an intuitive
way to combine prior information and data to achieve our inferential objective.

Although A and B represent events in the above notion, the equation
still holds if they are replaced by more general entities, such as data sets or
parameters. For example, consider A as the probability that a coin lands on
heads; therefore we can replace A by a parameter h, the chance of seeing
a head. Now consider B as the results from tossing this coin N times;
therefore we can replace B by a set of observations Y = (Y1, . . . , YN),
where Yi = 1 or 0 corresponds to a head or tail from the ith tossing. Then
P(B|A) = P(Y |h) = hH (1 − h)T , where H is the total number of heads and
T is the total number of tails observed from N experiments. We can use the
Bayes theorem to infer the probability that this coin lands on heads based on the
observations Y , P(h|Y ), through the Bayes theorem as follows. Note that we can
exchange the roles of A and B so that P(A|B) = P(A and B)/P(B). Therefore,
P(h|Y ) = P(h and Y )/P(Y ) = P(h)P(Y |h)/P(Y ). It is easy to see that the pos-
terior distribution of h depends on three quantities: the prior distribution for h,
P(h); the probability distribution for the observations Y conditional on the param-
eter h, P(Y |h); and the probability for Y integrated over all possible values of h,
P(Y ) = ∫ P(Y |h)P(h)dh, which is independent of h. Depending on the specific
choices of the prior distribution for h, we will have different posterior inference
conditional on the observed data Y . Although simple, this example illustrates
the general approach for inferring parameters of interest, denoted by θ , from a
prior distribution π(θ) and observations Y , through the following equation:

π(θ |Y ) = π(θ)P(Y |θ)/P(Y ) ∝ π(θ)P(Y |θ).
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Consider a population genetics problem similar to the one discussed above.
Instead of inferring one individual’s ethnic background, our goal is to infer
the allele frequencies of a set of genetic markers from the collection of a set
of individual samples. In the case of a single marker, the observed data are
the genotypes from a set of individuals at this marker, and the parameter is
the allele frequency of this marker. Then we have P(allele frequency|marker
data) = P(marker data|allele frequency) P (allele frequency)|P(marker data). P
(marker data|allele frequency) can be calculated based on the Hardy–Weinberg
equilibrium. The prior information comes in the form of P(allele frequency),
which is usually assumed to have the Dirichlet distribution, and an integration
is needed to calculate P(marker data) where the integration is over the prior
distribution for the allele frequencies.

From these three examples, we can see that the simple Bayes theorem
can be applied to a variety of problems where the events A and B can
represent different entities. For most Bayesian methods, A and B usually
correspond to the observed data and parameters of interest, respectively,
which can be generically denoted by Y and θ , and the goal is to infer the
posterior distribution of π(θ |Y ) = π(θ)P(Y |θ)/P(Y ). There are three key
elements in applying the Bayesian theorem to a specific problem: model
specifications, which are needed to evaluate P(Y |θ); prior specifications,
which are needed to define π(θ ); and computational methods needed to
infer the posterior distributions, because it is usually not easy to directly
evaluate P(Y ). Statistical inference is usually achieved through sampling
from the posterior distribution π(θ |Y ). It is important to specify model
forms and prior distributions such that (1) the models are comprehensive
enough to appropriately model the observed data; (2) the prior distributions
can reflect the degree of knowledge about the model parameters; and (3) it
is feasible to infer the posterior distributions through appropriate computa-
tional methods. One major driving force that has made Bayesian methods
widely employed in recent years is the development and applications of
Markov chain Monte Carlo methods for posterior inferences (Gilks et al.,
1995). Among different Markov chain Monte Carlo methods, the Gibbs
sampler is the most commonly used one when there are a large number
of parameters involved in a model. Let θ denote the collection of all the
model parameters. It may be difficult to sample from the joint posterior
distribution of π(θ |Y ) when θ has a large dimension. On the other hand,
if θ can be partitioned into C subsets in the form of θ = (θ1, θ2, . . . , θC),
and if it is relatively easy to sample from π(θ 1|{Y , θ2, θ3, . . . , θC}),
π(θ2|{Y , θ1, θ3, . . . , θC}), . . . , π(θC |{Y , θ1, θ2, . . . , θC−1}), the Gibbs sampler
proceeds by repeatedly sampling θ1, θ2, . . ., and θC from these distributions to
arrive at an empirical distribution of the joint posterior distribution of π(θ |Y ).
In the following, we discuss several Bayesian methods that have proven useful
in genomics and proteomics studies.
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6.3 Inference of population structure
from genetic marker data

Genome-wide association studies have led to many discoveries of genes
associated with common diseases in recent years. Such studies usually involve
hundreds or thousands of individuals, each genotyped at hundreds of thousands
of genetic markers. In the case–control association study setting, each individual
either has the disease of interest or is normal. Putative markers associated with
disease are often identified from comparing the genotype distributions between
the cases and controls. In such analysis, the presence of sample heterogeneity in
their genetic background, often called population stratification, may complicate
association analysis, leading to false positive results. For example, if the
cases and controls differ in the proportions of people from a specific ethnic
background, any marker having ethnic differences may be incorrectly inferred
to be associated with disease phenotype. One strategy to deal with sample
heterogeneity is to first infer population structure from the collected genotype
data, which can be represented as

G = {G1, G2, . . . , GN }, G1 = {g11g12 · · · g1M}, . . . , GN = {gN1gN2 · · · gNM},

where N is the number of sampled individuals, M is the number of markers,
and gij is the genotype for the ith individual at the j th marker, where
i = 1, 2, . . . , N , and j = 1, 2, . . . , M . For simplicity, we only consider biallelic
markers. Let the two alleles for a given marker be labeled by A and a; then the
genotype at each marker can be coded as 0, 1, or 2 according to the number of
allele A that an individual carries. Let us assume that there are K subpopulations
in the overall sample. The objective is to infer the subpopulation membership for
each individual, T = {t1, t2, . . . , tN }, where ti = 1, 2, . . . , or K, i = 1, 2, . . . , N .
T can be considered the primary set of parameters to be inferred from the
observed data, G . To facilitate the inference of T , we introduce other parameters
relevant to our inference; that is, the allele frequencies F = {F 1, F 2, . . . , FM},
F 1 = {f11, f12, . . . , f1M}, . . . , FK = {fK1, fK2, . . . , fKM }, where fkj is the fre-
quency of allele A of the j th marker in the kth population, j = 1, 2, . . . , M, k =
1, 2, . . . , K . Based on the Bayes theorem, we can infer T and F as follows:

P({T , F }|G) = P({T , F })P(G |{T , F })/P(G) = P(T )P(F )P(G |{T , F })/P(G),

where we assume that the priors for T and F are independent. Although this
formulation is straightforward, simultaneously inferring the joint posterior
distribution of T and F is nontrivial. On the other hand, it is much easier
to infer the posterior distribution of T conditional on F and G and infer the
posterior distribution of F conditional on T and G . First, conditional on the
allele frequency information F for each marker and the genotypes across all
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the M markers G for each individual, we can derive the posterior probability
that an individual is from the kth subpopulation as

P(ti = k|{F , G}) = P(ti = k)P({F , G}|ti = k)/P({F , G})
= P(ti = k)P(F |ti = k)P(G |{F , ti})/P({F , G})
∝ P(ti = k)P(G |{F , ti}),

where P(G|{F , ti}) can be obtained through information on allele frequencies and
Hardy–Weinberg equilibrium for each marker within each subpopulation. Sec-
ond, conditional on the subpopulation membership for each individual T and the
genotype information G , it is easy to infer the posterior distribution of the allele
frequencies for the markers for each subpopulation by considering the marker
genotypes for all those individuals inferred to belong to this subpopulation. We
omit the details on the exact forms of these distributions, which can be found
in the paper by Pritchard and colleagues (Pritchard et al., 2000). Through the
Gibbs sampler, we can alternate between inferring the posterior distributions of T
and the posterior distributions of F by iteratively sampling {t1, t2, . . . , tN } from
P(T |{F , G}) for a realization of T and then sampling {F 1, F 2, . . . , FM} from
P(F |{T , G}) for a realization of F until convergence. The key for the inference
of T , the main objective for this problem, is the introduction of another set of
unknown parameters F that characterize the allele frequency distribution prop-
erties of each subpopulation. With this new set of parameters, the conditional
distributions of P(T |{F , G}) and P(F |{T , G}) have relatively simple forms and
allow us to easily sample from their conditional distributions. More sophisticated
models have been developed along this line of reasoning (Falush et al., 2003), and
this modeling approach has led to many significant advances in characterizing
the general structure of different human populations (Rosenberg et al., 2002).

6.4 Inference of protein binding motifs
from sequence data

It is well known that transcription factors recognize their DNA binding targets
through factor-dependent motifs, represented either by a DNA sequence, for
instance CACGTG, or a position weight matrix (PWM), for example

1 2 3 4 5

A 1 0 0 0.9 0
C 0 0.8 0.3 0.1 0
G 0 0.2 0.7 0 0
T 0 0 0 0 1

where this matrix represents a motif of length five and each entry in this matrix
represents the probability that a specific base in this motif has a given nucleotide.
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Therefore, the identification of motifs may lead to better understanding of how
different genes are regulated by transcription factors. One way to infer binding
motifs is to search for common patterns from a set of sequences that are known
to be bound by a given transcription factor. We introduce the following notations
to formulate the statistical problem. Let the K observed sequences be denoted by
S = {S 1, S 2, . . . , SK}, where S 1 = {s11s12 · · · s1L}, . . . , S K = {sK1sK2 · · · sKL},
and where, for simplicity, we assume that these sequences have the same length,
L, and each base sij is of one of four possible nucleotides. The objective is the
inference of the PWM W = {wDj }, where wDj is the probability that the j th base
is of nucleotide D, where D = ‘A,’ ‘C,’ ‘G’ or ‘T,’ j = 1, 2, . . . ,M , and we
assume the motif length, M , is known. That is, we would like to infer the PWM
conditional on the observed sequence data S . Now we introduce a new set of
unknown parameters to facilitate statistical inference. This new set of parameters
is the starting positions of the motif in each sequence T = {t1, t2, . . . , tK}, where
ti = 1, 2, . . . , or L − M + 1. Although it is not easy to sample from the joint pos-
terior distribution of {W , T }, we can infer their distributions through the Gibbs
sampler by iteratively sampling from the posterior distributions of P(W |{T , S })
and P(T |{W , S }), respectively, which have relatively simple forms. First, condi-
tional on the starting positions of the motif for each sequence, it is easy to tabulate
all the motifs across all the sequences and sample from the posterior distribu-
tion of P(W |{T , S }). Second, conditional on the PWM W , we can calculate the
conditional probability that the motif starts at each position along the sequence
and then sample the starting position based on these conditional probabilities.
We can iterate between these two steps until convergence. The basic idea of
this algorithm was first described by Lawrence and colleagues (Lawrence et al.,
1993) in a somewhat different context, and then widely adopted to much more
diverse and complex models (Zhou and Wong, 2004). The first two examples
involve the use of one type of data, and the key was the introduction of a new
set of parameters that facilitate statistical modeling and inference.

6.5 Inference of transcriptional regulatory
networks from joint analysis of protein–DNA
binding data and gene expression data

In this section, we discuss the use of Bayesian methods to integrate data from
multiple sources. The objective is to infer the regulatory targets of transcription
factors from joint analysis of gene expression data and protein–DNA binding
data. Gene expression data can be gathered from microarrays having probes
targeting transcripts, whereas protein–DNA interaction data can be obtained
through chromatin immunoprecipitation experiments coupled with microarrays
with probes targeting regulatory regions. These two data types reveal different
aspects of the gene regulation process, with the protein–DNA binding data sug-
gesting the potential targets of transcription factors, and the gene expression
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data showing the results of the complex regulation process. If the protein–DNA
interaction data were perfect, that is, there is no experimental noise and all binding
targets are functional, such data by itself would be sufficient to deduce the regula-
tory network. However, as with any high-throughout data, there can be substantial
noises in protein interaction measurements, and more importantly, the observed
physical binding between a transcription factor and the regulatory region of a
gene does not necessarily imply that the binding is functional. Therefore, the
incorporation of gene expression data can help resolve some of the ambiguities
and errors in the protein–DNA interaction data. For example, if a set of five genes
have very similar expression profiles across a large number of experiments, and
four of them are bound by the same transcription factor with the fifth one showing
marginal evidence of binding, then under the assumption that these five genes are
similarly regulated, we may infer that the fifth gene is also regulated by the same
transcription factor despite the fact that the binding evidence is marginal. We can
formulate this rationale with the following statistical model Y = Aβ + e, where
Y = (y1, y2, . . . , yN)T denotes the gene expression level of the N observed
genes, β = (β1, β2, . . . , βJ )T denotes the activities (which are unobservable) of
the J transcription factors, A = {aij , i = 1, . . . , N, j = 1, . . . , J } denotes the
functional binding intensity between the ith gene and the j th transcription fac-
tor, and e = (e1, e2, . . . , eN)T denotes the noises not explained by the model.
As for aij , we assume that aij = bij × rij , where bij is the observed binding
level between the ith gene and the j th transcription factor and rij is an indicator
(unobserved) with value being either 1 or 0 corresponding to whether the j th
transcription factor does (1) or does not (0) regulate the ith gene. See (Sun et al.,
2006) for the justification of this model. The linear regression model Y = Aβ + e
integrates both gene expression data (Y ) and protein–DNA interaction data (bij )

through the unobserved regulatory network defined by {rij } and the unobserved
transcription factor activities (β). Although seemingly complex, the Gibbs sam-
pler can be applied for statistical inference as follows. First, conditional on a
known regulatory network {rij }, then the regression model becomes a standard
regression problem where the goal is to infer the transcription factor activities β.
Under the Bayesian setting, the posterior distribution of β can be easily derived
and a set of activity levels can sampled from this posterior distribution. Second,
conditional on the sampled transcription factor activity levels, we can derive
the conditional probability for any specific regulatory pattern given the observed
expression data and the activity levels. Then we can sample a specific regulatory
pattern from the conditional distribution. We then iterate between these two sam-
pling steps to infer the regulatory networks from the sampled parameter values.

6.6 Inference of protein and domain
interactions from yeast two-hybrid data

Protein interactions play a central role in many cellular processes, such as sig-
nal transduction, gene regulation, and cell cycle control. Alterations in protein
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interactions perturb the normal cellular processes and contribute to many diseases.
The correct identification of protein interactions can help us assign the cellular
functions of novel proteins, investigate the mechanisms of intracellular bio-
chemical pathways, and understand the underlying causes of diseases. Different
methods have been developed to gather high-throughput protein interaction data,
with the yeast two-hybrid (Y2H) experimental technique providing the most
direct evidence of physical protein interactions. Although extensive data have
been generated through the Y2H, this experimental approach suffers from high
error rates, with the estimated false negative rate above 0.5. Due to the large
number of possible non-interacting protein pairs, although the false positive rate,
defined as the ratio of the number of incorrect interactions observed over the total
number of non-interacting proteins, is small (1 × 10−3 or less), the false discov-
ery rate, defined as the ratio of the number of incorrect interactions observed
over the total number of observed interactions, is much greater and is estimated
to be 0.2 to 0.5, indicating that a large portion of the observations from the
Y2H technique are incorrect. Therefore, it is desirable to reduce the errors in
Y2H data, and one approach is through the integration of data from a number
of model organisms, such as yeast, worm, fruit fly, and humans. An appropri-
ate statistical model is needed to pool data from different organisms together.
Noting that domains are structural and functional units of proteins and are con-
served during evolution, and protein interactions are mediated through domain
pairs, one possible strategy is to utilize domain information as the evolution-
ary connection among these organisms. In this setting, there are two sources
of information used: the observed protein interaction data from Y2H experi-
ments, and the annotated domain information for each protein. For a total of N

proteins and Y2H data from K different organisms, the Y2H data can be rep-
resented as {Oijk , i, j = 1, . . . , N, k = 1, . . . , K}, where Oijk = 1 if proteins i

and j are observed to interact with each other in the kth organism. Based on the
domain annotation information, we use D i to represent the collection of domains
in protein i. We then make the following assumptions to develop a statistical
model for data integration: (1) Domain interactions are independent, so whether
two domains interact or not does not depend on the interactions among other
domains. (2) The probability that two domains m and n interact is the same
among all the organisms. (3) Two proteins i and j interact if and only if at
least one pair of domains from the two proteins interact. Let λmn denote the
probability that domains m and n interact with each other, and Pijk = 1 or 0
denote whether proteins i and j interact with each other (1) or not (0). With
these assumptions and notations, we have P(Pijk = 1) = 1 − �D(m,n)(1 − λmn),
where the product is over all D(m, n) domain pairs from protein pair i and j

in organism k. Due to experimental errors, the observed interaction data {Oijk }
may differ from the true interaction data {Pijk }. Let fn and fp represent the
false negative rate and false positive rate of the protein interaction data. We
then have P(Oijk = 1) = P(Pijk = 1)(1 − fn) + (1 − P(Pijk = 1))fp. Although a
likelihood-based method can be used to derive frequentist-based solutions to
this problem (Liu et al., 2005), the false negative and false positive rates of the
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observed protein interaction data have to be treated as known, which is rarely the
case in practice. With proper specifications of priors for the model parameters,
such as fn, fp, and λmn, a Bayesian approach was developed so that the domain
interaction probabilities, the false positive rate and the false negative rates of
the observed data can be estimated simultaneously (Kim et al., 2007). Compared
to the likelihood-based methods, the Bayesian-based methods may be more effi-
cient in dealing with a large number of parameters and more effective in allowing
for different error rates across different data sets. Moreover, assuming that the
majority of the domain pairs do not interact, that is, by imposing a sparse prior
distribution, the prediction accuracy can be further improved (Kim et al., 2010).

6.7 Conclusions

The general Bayesian framework coupled with computational tools offer a pow-
erful approach for modeling and analyzing complex genomics and proteomics
data. Bayesian methods have been applied to many more problems than we have
discussed in this chapter (e.g., Alterovitz et al., 2007; Ding, 2006; Spyrou et al.,
2009; Zhang et al., 2010; Zhang and Liu, 2007). As noted in the introduction
section, several books have been published focusing on Bayesian methods in
computational biology, showcasing the active developments in this area.

As shown in the examples, statistical inference for Bayesian models is usually
based on the Gibbs sampling scheme where the posterior distributions are inferred
from iteratively sampling from a set of conditional distributions. Aside from
significant computational demands, it is critical to ensure that the samples thus
obtained can be used to represent the correct posterior distributions. Therefore, we
need to monitor the convergence of the samples, and multiple runs are sometimes
needed to check for the consistency across many runs.

As for any Bayesian method, the choices of prior distributions may impact
the conclusions drawn based on the posterior distributions. Although prior dis-
tributions may be dominated by the observed data when there are sufficient data,
there is no guarantee this would always be the case, especially when the number
of parameters is large, which is often the case in the analysis of genomics and
proteomics data. Some types of sensitivity analysis may be needed to evaluate
the impacts of the changes in the prior distributions.

Despite these potential caveats, we believe that the Bayesian approach can
offer a consistent framework for knowledge and data integration in the analysis
of genomics and proteomics data, which is critical when many types of data
need to be jointly analyzed to extract the most information from these data.
For example, if we know the regulatory relationship among a set of transcrip-
tion factors and genes, this knowledge can be easily brought into the analysis
by fixing these relationships. However, such prior knowledge may be difficult
to incorporate under a frequentist approach. Computationally, Bayesian methods
are well suited for complex models where many parameters, sometimes num-
bered in hundreds or thousands, are involve in the model. Although it may be
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possible to infer these parameters in a frequentist setting, such as through the
expectation-maximization algorithm to maximize the likelihood, the likelihood
surface may have many modes, making the inference unstable and difficult. On
the other hand, Bayesian analysis through sampling from the posterior distri-
butions may lead to more stable results. Sparsity constraints can also be easily
incorporated through sparse priors. Because we would like to convey the basic
ideas and approaches of Bayesian methods in this chapter, we have not attempted
to provide the detailed implementations of these models. Interested readers can
refer to the original publications. In addition, several excellent books are avail-
able to provide the foundations on Bayesian analysis (Box and Tiao, 1992; Carlin
and Louis, 2009; Gelman et al., 2004; Gilks et al., 1995) as well as computational
implementations (Albert, 2009).
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7

Automatic text analysis
for bioinformatics knowledge
discovery

Dietrich Rebholz-Schuhmann and Jung-jae Kim

7.1 Introduction

Automatic literature analysis has been successfully integrated into bioinformatics
research and services to promote efficient knowledge discovery. Biomedical
text mining is an interdisciplinary domain from computational linguistics for
text analysis and from computational biology in biomedical research. The two
original domains share well-established IT solutions and one important data
resource, that is, the biomedical scientific literature. In this chapter, we explain
the integration of automatic text analysis into the knowledge discovery efforts
in biomedical research.

Biomedical research becomes driven by the results from high-throughput
experiments and by the exploitation of large-scale electronic data resources. The
former produces new results, while the latter gives access to standardized knowl-
edge. The biomedical scientific literature, consisting of scientific papers reporting
on the ‘new’ results, is being integrated into the electronic data resources by
database curators. The literature analysis is thus crucial for the knowledge dis-
covery in biomedical research.

The scientific literature in biomedicine (i.e., MEDLINE abstracts and full-text
documents) is a rich repository of up-to-date public knowledge that has been

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
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verified through peer review. Individual researchers formulate their novel
hypotheses by consulting related papers from the literature and based on
the results from their lab experiments. The novelty of the hypotheses has to
withstand a thorough literature analysis and an assessment against existing
data resources. The researchers exploit interactive literature analysis such as
PubMed searches as well as automatic text processing solutions such as protein
interaction networks from the scientific literature to increase the accuracy and
efficiency of the literature-related works. In principle, text mining solutions
support knowledge discovery by providing fast access to documents and thus to
the information contained in the documents.

7.1.1 Knowledge discovery through text mining

Knowledge discovery is, in a specific sense, defined as a domain of computer
science seeking meaningful patterns from data with automated techniques, in
particular employing data mining techniques (Fayyad et al., 1996). Similar tech-
niques are applied to data retrieved from the scientific literature. In addition to
this pattern recognition approach, text mining targets the extraction of informa-
tion that is explicitly expressed in the syntax and semantics of natural languages
(e.g., English). The explicit information has of course been expressed by the
authors of the text and is therefore known to them, but it is potentially unknown
to a large number of researchers, who would benefit from automated text mining
solutions that extract and deliver the contained information in a structured form.
Altogether, text mining can untangle, normalize and deliver facts from natural
language text to improve the background knowledge and scientific performance
of biomedical researchers.

A number of tasks for knowledge discovery, which are to disclose valuable
information from the literature, have been addressed by, or with the help of,
text mining solutions, providing new insights for biomedical research questions.
For example, researchers have analyzed the scientific literature to identify the
sub-cellular locations of proteins at high accuracy (Brady and Shatkay, 2008).
Genes from microarray experiments have been clustered to identify genes with
similar functions, based on both the similarity of their expression profiles and
the similarity of their contextual features from the scientific literature (Blaschke
et al., 2001; Küffner et al., 2005). Other bioinformatics tasks, which have prof-
ited from the contextual features from the literature, include the prediction of
protein functions based on protein interaction networks (Jaeger et al., 2008), the
annotation of mutations and residues of genes and proteins (Nagel et al., 2009),
and the prediction of gene–disease associations based on gene annotations from
biomedical data resources (Lage et al., 2007). Last, but not least, the scientific
literature has been analyzed to identify protein–protein interactions and protein
interaction networks (Blaschke et al., 1999; Jaeger et al., 2008).

In addition to the fully automated text mining approaches, solutions for inter-
active search driven by user queries have been developed to enable efficient
retrieval and exploitation of the scientific literature. Also, we can expand and
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annotate existing biomedical data resources by extracting relevant information
from the literature. We can interpret the results of high-throughput experiments
by exploiting the literature with data mining techniques. All these applications
are due to the presence of experiment details, findings, and hypotheses in the
scientific papers of the literature.

7.1.2 Need for processing biomedical texts

The need for text mining in the biomedical domain primarily comes from the
huge size of the literature (currently over 19 million abstracts in MEDLINE),
where each piece of text in the literature encodes valuable information. Though
the literature is the main source of biomedical text mining, other sources such as
patents and electronic medical records (EMRs) have been considered as well.

Text processing starts with the decomposition of text. A text is specified
by the sequence of its tokens, or words, apart from formatting details, tables,
and figures. Tokens can be words or symbols such as punctuation marks,
quotation marks, and slashes. The combination of subsequent tokens may form
a composite term (e.g., ‘Bcl-2 ’, ‘cancer cell growth’). The tokens and terms
are indexed by search engines and used as features in data mining approaches,
for example, for clustering and classification of texts. More complex structures
of texts are based on the language syntax that combines tokens into phrases
and sentences. These compositional structures denote relationships between
terms, facts, and events and can thus be used as bases for logical reasoning and
discourse analysis. Figure 7.1 depicts part-of relations between the textual units,
examples of the units, and a relation between terms.

A search engine has its own index of tokens and terms from texts and, given a
query from a user, returns relevant documents by matching the query to the index.
Even after the filtering through search engines, it is a time-consuming job for
researchers to read a large number of filtered documents to locate the information
of their interest. The user may devise a very specific query to grasp only a handful
of documents, but will then miss many other related documents. Text mining can
assist the user in locating interesting information from loosely filtered documents.

Since the scientific papers are still very long to read, text mining can
help users by locating and highlighting the most relevant terms, sentences,
and paragraphs from the retrieved texts. Text mining can also help users by
classifying texts into semantic categories among which the users can choose the
most relevant topic.

More sophisticated solutions locate named entities (e.g., a protein name, a
disease name) in text and, if required, link them to the identifiers of correspond-
ing entries in reference databases (e.g., UniProt, OMIM). They then recognize
binary relations between the entities (e.g., protein–protein interactions) and more
complex events of the entities. They may transform the facts into an ontological
representation (Daraselia et al., 2004; Cimiano et al., 2005).

The potential users of these text mining solutions can be roughly grouped
as follows: (1) researchers who have the job of populating a scientific database
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Database semantics:
Argument-agent: Bcl-2
Argument-patient: Paxilin
Relation-type: interaction

Literature

Corpus

Text

Tokens

Terms
(Semantics)

Relation

Bcl-2
Paxilin

Interaction-relation: Bcl-2 ++ Paxilin

DB

Figure 7.1 A text is decomposed into tokens. Tokens form a term that has a
semantic type. Sentences convey facts, for example, represented as a relation
between terms. Facts from texts can be transformed into database semantics.

with facts (called biocurators); (2) researchers who mine scientific literature for
automatic integration of the literature into other data resources (bioinformaticians);
and (3) researchers who seek background information on specific questions of their
research (biomedical researchers). The first two research groups might employ
large-scale means for the sophisticated text processing tasks, whereas the last group
might submit queries of the specific questions to interactive Web interfaces of text
mining solutions.

Those biomedical texts are not the only data sources scrutinized by text min-
ing techniques. Although the techniques for text mining originate in general from
the field of natural language processing (NLP), NLP techniques have also been
applied to genomic and proteomic sequences since these are based on alphabets
as well (e.g., A-C-G-T, Ala-Cys-Glu). They have adapted the algorithms of pat-
tern matching and parsing to such bioinformatics tasks as sequence alignment,
motif identification, and secondary structure prediction (Smith and Waterman,
1981; Knudsen and Hein, 2003; Bradley et al., 2008). However, we will not
discuss this research topic in this chapter.
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7.1.3 Developing text mining solutions

The successful application of text mining for knowledge discovery depends on
(1) the information needs of users; (2) the content of available literature; and
(3) the selection of appropriate methods to deliver the content with good quality
to the users. Developers of text mining solutions should thus understand the
needs of the users, the NLP techniques required for meeting the needs, and
the data resources needed for the text processing. Text mining in the biomedical
domain increasingly profits from semantic resources like ontologies. This chapter
provides the basic information for the developers in Sections 7.3 and 7.4.

In principle, any research question that is related to the expression of facts in
text could profit from text mining technologies. In reality, a number of constraints
have to be kept in mind to perform a requirement analysis. First, the literature
must be accessible in an electronic form where the text is easily discernible (cf.
PDF format, MS Word format). This is often not the case, when a document
from ancient archives has to be analyzed.

Second, the information in the documents has to be represented in a way that
meets the standardization criteria of the scientific domain (e.g., the terminology)
and the expressions for the information have to be grammatically appropriate. In
Poems and fictions, the authors do not have such constraints except the language
rules. In the biomedical domain, international collaborations have been set up
to ensure the standardization of the terminology (Gerstein and Krebs, 1998;
Leitner and Valencia, 2008).

Third, it has to be clear how the representation of the information in text
can be identified with automatic means. It is not necessary that the information
contained in the literature should be of large quantity, but typically text pro-
cessing techniques are required only if a large amount of documents have to be
processed.

Last but not least, the facts from the literature should not be confused with
raw data obtained from experiments, where the former are the results from the
interpretation of the latter by the authors. On the other hand, the scientific lit-
erature is the first-hand delivery of the author’s interpretations that have gone
through the verification process instantiated by peer review.

A typical type of information expected from the biomedical literature is
protein–protein interactions. They can be used, for example, for constructing
protein networks of biological pathways, for verifying relations between co-
expressed genes in microarrays, and for collecting candidate genes for a disease
pathway. In general, the information automatically obtained from the litera-
ture can be used for the curation of data resources, the interpretation of high-
throughput experiment data, and the design of laboratory experiments.

We emphasize that some of the text mining tasks are easy even for beginners
to tackle with simple methods like co-occurrence analysis and pattern matching.
It depends on the complexity of the targeted information. We provide several
success stories of biomedical text mining in Section 7.5.
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7.2 Information needs for biomedical text mining

Text mining analyses facts and features reported by authors in the literature. The
researchers of a research domain in biomedicine contribute to the biomedical
literature, require up-to-date information of their domain, and also seek recent
discoveries in other related domains. These practices upon the literature apply in
the same way to patents and EMRs.

The needs for information from the literature can be classified into the fol-
lowing two groups: (1) needs for information that can be identified in text and
then transformed into a normalized format such as protein–protein interactions
and gene regulatory events; and (2) needs for sets of text documents or text
passages matching user queries. For text mining we define normalization as the
process of semantically characterizing the information extracted from text. For
instance, the protein–protein interactions extracted from text are characterized as
an interaction event involving the two participating proteins.

Table 7.1 summarizes the characteristics of the two groups that will be dis-
cussed below. The two groups are complementary to each other in the sense
that a solution for one group can be used to serve the benefits for the other
group. They are not completely distinctive such that there are applications that
do not clearly fall into either group. For example, iHOP which is dedicated to
retrieve the sentences that express protein-protein interactions produces a set of
sentences without any explicit user query, helping curators populate the databases
of protein-protein interactions.

7.2.1 Efficient analysis of normalized information

Text mining can extract the terms of entities and concepts, and facts about the
terms, typically binary relations between the terms. We discuss information needs
for two objectives: integration of bioinformatics data and knowledge discovery.

7.2.1.1 Term identification for bioinformatics data integration

Understanding a scientific text requires identification of domain-specific terms,
for example, of genes/proteins, diseases, sequence variation of genes and pro-
teins, protein residues, chemical entities, and biomedical concepts such as Gene
Ontology concepts.

The identification of gene and protein names has progressed more than that
of the other types of terms in recent years, and the state-of-the-art solutions show
around 85% balanced F-score for human protein names (Wermter et al., 2009).
Solutions taking different species into consideration have to include the species
identification in the analysis and possibly make use of sequence variability to
produce optimal results (Divoli et al., 2008; Hakenberg et al., 2008; Winnenburg
et al., 2008).

The term recognition for diseases and chemical entities has progressed less,
and produces poorer performance than the gene/protein name identification
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Table 7.1 Comparision between the two types of information needs.

Information type

Text documents and text
passages

Normalized information

Research area Information retrieval Information extraction
Examples of

output
A set of text passages, a

collection of
documents, a list of
sentences

Protein–protein interaction,
gene–disease relation

Specification of
information
request

User queries written in a
query language

Relational database schema

Anticipated
general purpose

Seeking relevant
information from a
large collection of
documents (e.g., the
Web, MEDLINE)

Database population by
gathering information that
matches the database
schema

Applications
serving the
needs

Search engine, solutions
for document
classification

Solutions for database
population

Application
domains

Any domain Domains of the databases

Approaches Statistical approaches to
decomposing
documents into
features and analyzing
the distribution of the
features

Statistical, pattern-based,
machine learning
approaches to attributing
semantic roles to textual
features and relating them
to each other

Requirements that
constrain the
approaches

Users still have to read
the retrieved text to
find the information.
Users repeat the search
until they find the
information.

Fine-grained methods of
natural language processing
are required. Normalization
with standard databases
and ontologies is often
required.

(Wilbur et al., 1999; Jimeno-Yepes et al., 2008; Klinger et al., 2008). The
identification of mutations in the literature can be achieved at high precision
levels since the representation of mutation follows a well-defined nomenclature
(Rebholz-Schuhmann et al., 2004; Yeniterzi and Sezerman, 2009).

There are only a few of standard representation schemes for biomedical
named entities such as gene name and chemical name (Howe and Rhee, 2008).
On the other hand, there are many potentially important types of terms to
be annotated in the literature (Cohen and Hunter, 2008). This fact shows us
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the need for automatic annotation of the literature with so-called standard, or
reference, databases (e.g., GenBank, Swiss-Prot, ChEBI, OMIM). We have
proofs that such annotation can efficiently support database curation (Alex
et al., 2008; Karamanis et al., 2008).

The identification of conceptual terms such as ontology terms provides text
mining with a different perspective. Conceptual terms represent biological knowl-
edge. The association of named entities with the conceptual terms thus helps us
understand how the biological entities work for the biological world. One well-
known example is the annotation of gene products with Gene Ontology (GO)
concepts (Gene Ontology Consortium, 2000), which describe the properties and
functions of gene products in an abstract level (Hirschman et al., 2005; Cakmak
and Ozsoyoglu, 2007).

The identification methods introduced above can be combined with each other
to deliver more complex information extraction solutions. For example, the iden-
tification of protein name, protein residue, species, and GO concepts can be used
to annotate mutations with functional information (Nagel et al., 2009). Similar
approaches have recently identified mutations of protein kinases, changes in the
stability of G-protein-coupled receptors and changes in the activity of lipases
and amylases (Krallinger et al., 2009; Winnenburg et al., 2009; Yeniterzi and
Sezerman, 2009).

The term recognition methods aforementioned can be applied to the identi-
fication of the terms related to a given set of seed terms (Spasic et al., 2008;
Waagmeester et al., 2009). This application is effective for knowledge discovery
because of the representative role of terminology in the biomedical domain. They
use the seed terms to retrieve all relevant documents from the literature, analyze
the frequencies of terms in the documents, and manually extract relevant terms
among the most frequently occurring.

In summary, we need to recognize terms in text and to associate them with
standard databases and ontologies. This is the basic step for integrating the litera-
ture with bioinformatics data, where the bioinformatics data in various resources
are also being integrated into the standard resources.

7.2.1.2 Fact extraction for knowledge discovery

The terms themselves are not the main concern of biomedical researchers, but
the facts about the terms contained in the scientific literature are. For a domain
expert, an ideal application of text mining would be to periodically report recent
novel knowledge from the literature. However, this is not yet achievable, since
no standard representation of knowledge demands is available and also since
many more solutions have yet to be developed for knowledge discovery.

A lot of research has been invested into the extraction of facts from the
biomedical literature. All solutions have been geared with the information
needs of biomedical researchers to extract a wide range of types of facts
from the literature, including protein–protein interactions (Hunter et al., 2008;
Chowdhary et al., 2009; Rajagopala et al., 2008), phosphorylation events
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for proteins (Narayanaswamy et al., 2005; Yuan et al., 2006), sub-cellular
locations of proteins (Brady and Shatkay, 2008; Fyshe et al., 2008), causal
relations between genes and diseases (Rindflesch et al., 2003; Seki and
Mostafa, 2007; Ahlers et al., 2007; Cheng et al., 2008; Ozgür et al., 2008),
association of phenotypes with genes (Korbel et al., 2005; Chun et al., 2006;
Lussier et al., 2006), association of diseases with drugs (Chen et al., 2008),
contrastive relationships between proteins (Kim et al., 2006), negation of
protein–protein interactions (Sanchez-Graillet and Poesio, 2007), information
about ubiquitin-protein ligases (Lee et al., 2008), and gene regulatory events
(Saric et al., 2005; Rodrı́guez-Penagos et al., 2007).

These target information are mainly binary relations. It is still an open issue
to integrate them into biomedical pathways and networks (Oda et al., 2008). Fur-
thermore, it is expected to extract more types of facts, including all the event types
of Gene Ontology (Gene Ontology Consortium, 2000). Concerning these goals,
we should address such issues as applicability, robustness, and interoperability
of text mining systems.

Text mining techniques can also be used to enhance bioinformatics appli-
cations. For instance, it has been attempted to identify microarray data which
contain both disease and normal control states by analyzing free-text descriptions
of the data (Dudley and Butte, 2008), understand potential relations between co-
expressed genes by utilizing co-occurrences in the literature (Frijters et al., 2008),
and select genes that are highly likely to be involved in a disease pathway (Yu
et al., 2008).

Text mining can also be used to recognize scientific trends in the litera-
ture. The scientific literature has been analyzed to understand which scientific
trends are shared between the medical informatics and the bioinformatics research
domain (Rebholz-Schuhmann et al., 2007a), identify the journals that tend to
set the trends by following the chain of arguments through different scientific
journals (Rzhetsky et al., 2006), and identify paradigm shifts in the analysis of
neurodegenerative diseases (Lisacek, 2005).

In summary, text mining can extract both known and unknown facts
from the literature, link them into structures, and utilize them to interpret
bioinformatics data.

7.2.2 Interactive seeking of textual information

Nowadays all biomedical researchers and bioinformaticians have experience in
retrieving information from the scientific literature through search engines (e.g.,
PubMed, Google Scholar, ScienceDirect, Web of Science, CiteXplore) (Zhou
et al., 2006; Pezik et al., 2009). The search engines make use of the tokens
contained in documents to produce a list of documents that are relevant to a
query given by a user. However, users often find that relevant texts or text
passages are not always placed at the top of the search results. The successful
placement of relevant texts should consider issues below, concerning both search
engines and user queries.
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It is intuitively clear and scientifically proven that an underspecified query
(e.g., ‘cancer’) leads to the retrieval of a large number of documents with a lot
of false positive results. For example, the query term ‘cancer’ not only refers
to a disease but also to a sign of the zodiac. Moreover, the query term can
be matched to author affiliations (e.g., ‘National Cancer Institute’), while users
might expect to find the query term in titles or abstracts. Even if the query term
has the intended meaning in the document, users may still have narrower foci.

This fact leads us to the issue of query refinement , which is to provide an
alternative query. A general query makes search engines retrieve most of the
relevant documents, but the search engines could still fail to push them up to the
top of the search results due to the under-specification of user interests. A more
specific query may place some of the relevant documents in higher positions, but
will probably lose other relevant documents. Another problem is that it is not easy
to make up specific queries that represent the user interests precisely and produce
good results at the same time. In practice, a user would start with a general
query that refers to the whole domain of interest and add to the query the terms
found in the top-ranked documents to focus on sub-domains or vice versa (Ellis,
2005). These observations indicate the need for interactive interfaces toward
query refinement which guide users to effectively refine their queries. Advanced
search engines may also consider distinctive behavior patterns of users to cope
with the information seeking needs (Kim and Rebholz-Schuhmann, 2008).

Query expansion is a technique which adds related terms into a given query,
concatenated with the Boolean OR operator, to raise the coverage of the search
results. For instance, the single-term query ‘cancer’ may miss relevant docu-
ments that do not contain the term, but contain related terms like ‘tumor’ and
‘oncogene.’ Since it is impossible for users to list all the related terms in their
queries, many search engines (e.g., CiteXplore, HubMed, PubMed) provide ways
for automatic query expansion, for example including the synonyms, hypernyms,
and hyponyms of given query terms and the terms that frequently co-occur or
have similar distributions with the query terms. It is still an open issue whether
semantic resources such as MeSH and Gene Ontology can improve document
retrieval through automatic query expansion or query refinement (Tsuruoka et
al., 2008; Jimeno-Yepes et al., 2009; Trieschnigg et al., 2009).

Even when we get a reasonably small number of relevant biomedical papers
from search engines, we may not have enough time to read all the papers. If we
want to scan them through, we need automated aids for highlighting keywords and
key sentences. This highlighting has been demonstrated to improve the curation
work of biocurators (Mueller et al., 2004; Karamanis et al., 2008).

Another way of filtering relevant documents is via the categorization of
documents. Document classification or document clustering is to assign indepen-
dent classes to documents, where each document can have multiple assignments
and the classes are not necessarily predefined. Once users locate an interesting
document, they can follow the categories of the document to locate the other
documents of the categories, which are expected to be related to the first cho-
sen document. Users can also find relevant documents by selecting semantic
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categories of interest when the document classes are tagged with semantic labels
(Doms and Schroeder, 2005; Shatkay et al., 2008; Theodosiou et al., 2008). We
can also use the semantic labels to restrict our queries for search engines (Mueller
et al., 2004). The semantic labels for this usage are generally from ontologies
such as Gene Ontology.

Question answering is another useful approach to interactive information
seeking. The basic assumption of conventional search engines is that, given a
query, the user wants to receive documents that are similar to the query. In ques-
tion answering, the users can state their demands as interrogative sentences (or
questions) using interrogative words (e.g., ‘what,’ ‘how’). Given a question, the
question answering system tries to locate the text passages that have the answers
of the question. However, it is not yet achievable to understand the semantics of
arbitrary natural language questions. For practical reasons, the ongoing projects
of question answering have thus focused on definitional questions (Yu and Kauf-
man, 2007) or treated the questions as if they are the queries for conventional
search engines, focusing on such issues as query expansion (Hersh et al., 2009).

In summary, all approaches introduced above support individual researchers
in their knowledge discovery from the literature. They assume that a piece of
interesting information is there and that a user forms a query to retrieve the
information, ranging from a general term to a semantic label and to a specifically
described question. A text mining solution converts the query into a computable
format and filters documents or text passages that match the query. It is thus
essential for the success of the solutions to assist users in specifying their demands
clearly, to understand the underlying meaning of user specifications, and to gen-
erate the best computable form of the query.

7.3 Principles of text mining

Text mining is the task of deriving from text those information that meet user
requests. It requires the understanding of natural language to some extent and is
thus closely related to natural language processing (NLP). We give an overview
on the components of NLP solutions and describe existing approaches to text
mining applications using the terminology of NLP, focusing on the biomedical
domain.

7.3.1 Components

We provide the definitions of NLP components together with references that pro-
vide more detailed information. Review papers on biomedical text mining would
be also helpful for readers to understand underlying techniques (Cohen and Hersh,
2005; Scherf et al., 2005; Spasic et al., 2005; Erhardt et al., 2006; Jensen et al.,
2006; McNaught and Black, 2006; Roberts, 2006; Thomas et al., 2007; Zweigen-
baum et al., 2007; Cohen and Hunter, 2008; Kim and Rebholz-Schuhmann, 2008;
Rzhetsky et al., 2008; Winnenburg et al., 2008; Tuncbag et al., 2009).
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7.3.1.1 Software components

Tokenization is the process of splitting a text into tokens. A token is a word or
a symbol and serves as the basic unit for further processes of NLP.

Part-of-speech (POS) is a linguistic category of words such as Noun and Verb.
POS tagging is the process of resolving the POS tags of tokens. A well-known
set of POS tags in English has been proposed by the Penn Treebank Project1.

Named entity recognition is the task of recognizing named entities such as
person names and city names in text and associating them with appropriate
semantic categories such as Person and City (Park and Kim, 2006). It may be
further required to ground the named entities from text with database entries (e.g.,
UniProt entries for protein names). We call the grounding task term grounding
or term normalization. Term recognition is a more general task than named entity
recognition: it includes the identification of conceptual terms like ontology terms.

Parsing is to identify syntactic relations between tokens in a sentence,
for example those between a noun and its modifiers and between a verb
and its subject and object. The syntactic relations of a grammatical sentence
can be merged into a connected graph representation. Several models of
syntactic structures, including phrase structure, predicate argument structure,
and dependency structure, have been proposed and automatically converted into
each other (Clegg and Shepherd, 2007; Miyao et al., 2009). The state-of-the-art
parsers are based on such grammar formalisms as context-free grammar
(CFG) (Klein and Manning, 2003), dependency grammar (Briscoe et al.,
2006), head-driven phrase structure grammar (HPSG) (Sagae et al., 2007), and
combinatory categorical grammar (CCG) (Clark and Curran, 2007).

Full parsing is not always required for NLP applications. Partial parsing is
to identify only parts of the syntactic structure of a sentence (Abney, 1996).
Shallow parsing is often confused with partial parsing. We may define shallow
parsing as a specific approach to partial parsing that identifies sentential syntactic
structures only up to a predefined level or type of syntactic structure, for example,
noun phrases and verb phrases (Kim, 2006). Chunking is the task of breaking a
sentence into chunks , which are non-recursive intra-clausal constituents such as
basic noun phrases (Abney, 1996).

An anaphoric expression (e.g., ‘it’, ‘the person’) is a word or a phrase
that refers to a preceding expression in the same text, called the antecedent
(Mitkov, 2002). Anaphora resolution is the task of identifying the antecedent
of an anaphoric expression. A related task, called abbreviation resolution , is to
resolve the full names of abbreviations, which are often expressed in the form
of acronyms (e.g., ‘natural language processing (NLP)’).

Document retrieval or information retrieval is to retrieve documents that
are relevant to given user queries, mostly Boolean queries (Pezik et al., 2009).
In particular, we call the retrieval of unstructured texts text retrieval . When the
retrieved text is too long for users to read through, it is necessary to select a

1 www.cis.upenn.edu/∼treebank/
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passage (e.g., sentence, paragraph) in the text that is most relevant to the user
query. We call the task passage retrieval .

Document classification is the task of classifying documents into pre-defined
categories, while document clustering is to group similar documents into yet
unspecified clusters. It is possible to classify or cluster documents into a hierar-
chical structure.

Information extraction is the task of extracting information of predefined
types from text (McNaught and Black, 2006). The target information is typi-
cally relations between named entities such as protein–protein interactions and
gene–disease relations. Information extraction is mostly performed in an offline
manner, while the query response of information retrieval is performed online.

Question answering is, given a Wh-question from a user, to find the passage
that answers the question (Hersh and Voorhees, 2009). It is different from doc-
ument retrieval since it does not deliver a whole document, but the information
found in the document. It is also distinguished from information extraction in
that it deals with variable user queries, not only with fixed user requests.

7.3.1.2 Resources

A lexicon contains lexical information of words (Hirst, 2004). It may have
definitions, POS information, derivative forms, sub-categorization frames, syn-
onyms, semantic categories, and lexical semantics. Recent work has produced
lexicons specialized in the biomedical domain, including UMLS Specialist Lex-
icon, BioLexicon (Sasaki et al., 2008) and Geno (Wermter et al., 2009).

An ontology is a formal representation of concepts, providing a controlled
vocabulary. Ontologies are well-known forms for knowledge representation and
knowledge sharing. A lexicon is not an ontology due to the lack of the formality
such as the representation of equivalence, disjointness, and union (Hirst, 2004).
Ontology terms can be limitedly used for representing textual semantics (Spasic
et al., 2005), where the limitations of ontologies for the usage have been dis-
cussed (Tsujii and Ananiadou, 2005). OBO Foundry has a collection of referential
ontologies in the biomedical domain (Smith et al., 2007).

A corpus is a collection of texts. The texts can be annotated with the infor-
mation to be extracted by text mining solutions, called corpus annotation . The
annotated corpora can be used for training and testing text mining systems and
NLP components such as POS tagger and parser.

7.3.1.3 Evaluation metrics

Precision and recall are the most commonly used measures for evaluating text
mining systems against annotated corpora. Precision is the ratio of the facts
that are correctly extracted by the system (namely, true positive (TP)) over all
the facts extracted by the system. The facts that are incorrectly extracted are
called false positive (FP). Recall is the ratio of TP facts over the facts that are
annotated on the corpus as true examples. The annotated facts which are not
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extracted by the system are called false negative (FN). F-score is the harmonic
mean of precision and recall.

Precision = TP

TP + FP
Recall = TP

TP + FN
(7.1)

F-score = 2 × Precision × Recall

Precision + Recall
.

Equation (7.1): Definitions of evaluation measures.

7.3.2 Methods

7.3.2.1 Text retrieval

In general, text retrieval systems work in two modes (Baeza-Yates and Ribeiro-
Neto, 1999). In the offline mode, they identify tokens and terms in a set of
documents and create an index for them. In the online mode, they analyze user
queries, match them to the index to retrieve relevant documents, and rank the
retrieved documents according to their scores of relevancy to the queries. Search
engines are the typical applications that exploit text retrieval.

Existing text retrieval solutions have further employed in-depth NLP tech-
niques to narrow down the search results (Kim and Rebholz-Schuhmann, 2008).
For instance, passage retrieval extracts short passages of the documents which
users will scan to check the relevance of the documents to their queries. Document
classification enables users to focus on a smaller collection of texts.

7.3.2.2 Term recognition

There are many open issues in term recognition (Ananiadou and Nenadic, 2006;
Park and Kim, 2006). For instance, we should deal with the high degree of term
variation (e.g., ‘D(2)’–‘D2’, ‘IGA’–‘IG alpha’) and term ambiguity (e.g., ‘orb’
either as a gene name or as a common English word, ‘CD4’ either as a gene
name or as a cell name) (Howe and Rhee, 2008). In some cases, we need to
recognize terms that are not yet registered in term repositories, bearing in mind
that biomedical knowledge is ever and rapidly growing.

A typical term recognition system may work as follows: It first locates all
noun phrases in text, on the assumption that all terms are noun phrases, either
standalone or embedded (e.g., ‘CD4’ in ‘CD4 activation’); the system then deter-
mines whether a noun phrase is, or contains, a term; and, if required, it grounds
the recognized terms with corresponding entries of standard databases.

The existing approaches to term recognition can be roughly classified into
the following four groups (Ananiadou and Nenadic, 2006; Park and Kim, 2006):
(1) dictionary-based approaches that match terms of standard repositories to text;
(2) rule-based approaches that learn rules and patterns for term recognition from
annotated corpora and recognize terms by using the rules; (3) machine learning-
based approaches that implement machine learning models for term recognition;



AUTOMATIC TEXT ANALYSIS 151

and (4) hybrid approaches that combine two or more of the above methodologies,
mostly in a sequential way, to achieve the optimal result.

Previous solutions to term recognition have been developed mainly for
unstructured text. It is a recent achievement to develop online solutions for
formatted documents such as MS Word documents and PDF files, where most
of scientific papers are available in such formats (Pavlopoulos et al., 2009;
Rebholz-Schuhmann et al., 2010).

The recognition of ontology terms in text is much more difficult than other
tasks of term recognition, because ontology terms are generally so artificial that
they do not literally appear in the literature or are confused with other terms in
the absence of contextual evidence (Tsujii and Ananiadou, 2005; Winnenburg
et al., 2008). To address this issue, researchers have located the component
words of ontology terms in text and then estimated the probability that the words
together represent the ontology concepts (Gaudan et al., 2008) or have auto-
matically collected language patterns that might represent the ontology concepts
(Cakmak and Ozsoyoglu, 2007).

7.3.2.3 Relation identification

The linguistic expression of a relation involves a keyword and its semantic argu-
ments, where the keyword indicates the semantic type of the relation and the
arguments indicate the related concepts. Such an expression often shows two
types of locality: the arguments are located in a local context of the keyword,
namely spatial locality , and have syntactic relations with the keyword, namely
structural locality (Kim, 2006).

The simplest approach to dealing with the spatial locality is to identify
co-occurrences between terms, based on the assumption that if two terms
co-occur frequently, then they are likely to be related to each other (Jensen
et al., 2006). But, this method is unable to recognize the semantic type of
the relation between the co-occurring terms. To address this issue, many have
used language patterns that represent relations of pre-defined types (Cohen and
Hersh, 2005). For instance, the pattern ‘A interact with B’ has been frequently
used for extracting protein–protein interactions. It is still an ongoing work to
automatically learn such language patterns for relation identification (Huang et
al., 2004; Hao et al., 2005).

Language patterns are effective in dealing with the spatial locality, but not
with the structural locality. To address the latter, some approaches utilize the
results of either full parsing or partial parsing (Kim et al., 2009). For matching
the language patterns to the parse results, they annotate the patterns with syntactic
information, for example, that the variable A in the pattern ‘A interact with B’
is the subject of the verb ‘interact.’ Other approaches deal with the structural
locality not through syntactic information, but through statistical information on
the contexts of the relation keywords (Chowdhary et al., 2009).

Many recent approaches to relation identification have employed machine
learning (ML) algorithms such as Maximum Entropy, Support Vector Machine,
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and Conditional Random Field (Kim et al., 2009). A typical ML system would
first locate a trigger word in text, which generally refers to an event of interest.
It then recognizes potential arguments of the event in the same sentence as that
of the trigger word and fills in the slots of an event template with the arguments.
ML systems can also consider the relation identification as a classification task
such that it is to decide whether a set of a trigger word and potential participants
together are formed into a relation or not (Hahn et al., 2009). They have utilized
various features for learning models, including lexical, chunking, parse, semantic,
proximity, and directionality features. These features address the two types of
locality at the same time in a single ML model.

Some text mining solutions seek to extract not the information of interest
itself, but the sentences that are likely to contain such information. They are
practical since, before adding extracted information into databases, the curators
of the databases always read source sentences to check the validity of the infor-
mation. The relevant sentence detection may demand less computing than the
information extraction (Krallinger et al., 2008).

The task of database population may require the extraction of not only the
main relation information (e.g., protein–protein interaction), but also the other
information of the target database (e.g., interacting protein domain, related dis-
ease) (Lee et al., 2008).

We may represent text mining results by using ontologies for knowledge
sharing (Daraselia et al., 2004; Cimiano et al., 2005; Saric et al., 2005). Owing
to the formality of the ontologies, we can then perform logical reasoning over
the results (Donnelly et al., 2006).

7.3.2.4 Bioinformatics tasks

Ng (2006) describes previous approaches to enhancing bioinformatics systems
by examining the literature. For instance, it has been proven that we can improve
sequence homology search by finding textual support for homologies, and
improve functional classification of proteins by combining sequence information
with textual information. We can also gather keywords for a gene cluster,
which might explain the common biological function of the member genes, and
enhance expression data analysis with literature knowledge.

Text mining techniques that have been employed for bioinformatics tasks so
far are mainly basic analyses of term frequencies and term co-occurrences. For
instance, the identification of keywords that are representative for a gene cluster is
based on the exclusive frequencies of the keywords (Frijters et al., 2008). While
these analyses would not show excellent performance for general purpose tasks,
they have been proven to be effective for highly focused tasks like those above.

7.4 Development issues

The development of a text mining system includes such phases as design, con-
struction, integration, and evaluation. During the design phase, we gather the
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information needs from users. During the construction phase, we develop corpora,
annotate them with the information to be extracted if required, and assess parts
of them to specify the use of language for the target information. We then collect
or develop NLP components that can analyze the language usages. During the
integration phase, we integrate the NLP components and required resources into
a system. During the evaluation phase, we evaluate the system against the cor-
pora. In this section, we only discuss issues that are particularly related to text
mining. Table 7.2 summarizes the development phases and their specific tasks
for text mining systems.

Table 7.2 Development phases for text mining systems.

Development phase Tasks

Design Specification of information needs
Construction Corpus construction and annotation

Analysis of language usages
Collecting and developing NLP modules

Integration Implementing interfaces for NLP modules and resources
Integrating NLP modules and resources into a system

Evaluation Evaluation of the system against annotated corpora
Evaluation of the system against all corpora

7.4.1 Information needs

It should be the first step to explicitly state the requirements for the text mining
task (Cohen and Hunter, 2008). One of the unusual decisions to be made for
biomedical text mining systems is whether the system should associate its results
with existing databases. This grounding is often expected since the biomedical
domain has many databases that are maintained by expert curators and cited by
researchers working in the domain. In short, this step should include enough time
to understand the needs from potential users (Karamanis et al., 2008).

7.4.2 Corpus construction

The next step is to construct corpora from which the text mining system will
extract the information of interest. We should carefully consider the issues below.

First, we should determine the selection criteria of input texts for the corpus
construction. In the biomedical domain, MEDLINE abstracts are freely available,
while full-text articles often produce overheads due to copyright issues and the
diversity of file formats. On the other hand, the full-texts have more information
than the abstracts (Corney et al., 2004). Other types of text have also been
considered, including electronic medical records (Heinze et al., 2001), patents
(Rhodes et al., 2007), figure and table captions (Hearst et al., 2007), MeSH terms
of MEDLINE citations (Neveol et al., 2007), and natural language comments in
databases (e.g., UniProt comments) (Dudley and Butte, 2008; Mottaz et al., 2008).
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Second, we should carefully determine the scope and size of corpora. It is not
always best to have the largest corpus. It has been reported that the performance
of text mining systems, in terms of precision and recall, is dependent upon the
selection of corpora (Rodriguez-Penagos et al., 2007). Typically, a text mining
system shows better precision from a corpus focused on a specific domain and
better recall from a corpus with a wide scope. It is thus recommended to have
multiple corpora with various foci and scopes.

Third, we need gold standard annotations of target information on the corpus
for the purpose of training and evaluating the system. We can develop the system
based on a subset of the annotations, named training corpus , and test the system
against the rest of the annotations, named test corpus . We do not have to annotate
all the corpora, but can choose, in general by random selection, a small portion
of the corpus for the corpus annotation.

Significant efforts have been exerted on the corpus annotation. The following
criteria have been proposed for the corpus annotation (Wilbur et al., 2006): focus
(e.g., scientific vs. general), polarity (positive vs. negative statement), level of
certainty, strength of evidence, and direction/trend (increase or decrease in certain
measurement). It is suggested that we should use standard formats for sharing the
annotations (Rebholz-Schuhmann et al., 2006; Johnson et al., 2007) and include
structural and linguistic information into the annotations (Cohen et al., 2005).
Different annotated corpora may result in different performances of the same
text mining system, which leads us to the need for the standardization of corpus
annotation (Pyysalo et al., 2008).

7.4.3 Language analysis

A step that is often neglected is to analyze the linguistic characteristics of the
information to be extracted (Cohen and Hunter, 2008). This analysis may lead
us to the realization of the depths of the problems before us (Netzel et al., 2003),
help us to understand whether the problems are solvable with the available NLP
techniques (Light et al., 2004), and give us the insight on how to tackle the
problems both effectively and efficiently (Kim et al., 2006). Of course, we should
be cautious neither to over-generalize nor to over-simplify the problems.

As the result of this step, we will understand what kinds of NLP modules
are required for a specific text mining task. A comprehensive number of NLP
modules are publicly available at the moment2. If there is any missing module, we
would develop one, consulting the existing methods introduced in Section 7.3.2.

7.4.4 Integration framework

Once we acquire the required NLP modules in hand, we should integrate them
into a system. If some modules are complementary to each other, they should
be arranged in parallel (Leroy and Chen, 2005). But, in most cases, we need a
sequential model for the integration.

2 http://zope.bioinfo.cnio.es/bionlp_tools/
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We here introduce two integration frameworks for biomedical text mining
systems. Kirsch and colleagues (Kirsch et al., 2006) have proposed such a model
for Web services, where each service encompasses a NLP module with a socket
wrapper and interacts with clients by the exchange of XML annotated texts. Kano
and colleagues (Kano et al., 2009) have presented U-Compare, an integration
framework based on UIMA (Unstructured Information Management Architec-
ture). It provides a type system that defines data types used by NLP tools,
ranging from sentenciser to parser. Please note that both integration frameworks
are Web-based services and support XML.

In addition, the resources for text mining such as lexicon, language patterns,
knowledge base, and queries should also be integrated in a semantic level. The
information selected from a resource by a module should be used as input to
another module and be semantically associated with those from another resource.
Ontologies are the common means for the semantic integration (Daraselia et al.,
2004; Cimiano et al., 2005). Typically, the resources share the concepts and
properties of an ontology for knowledge representation.

7.4.5 Evaluation

Last but not least, we should consider how to evaluate our systems against the
common evaluation measures such as precision, recall, and F-score (Cohen and
Hunter, 2008). Text mining systems would never be free from defects due to
the universal ambiguity of natural languages. The trade-offs between evaluation
measures are also well known. For example, if we tune our text mining system
to increase the precision, the recall of the system generally is lowered, and vice
versa. It is thus necessary to estimate the performance of text mining systems
in terms of a combined measure like the F-score. To obtain a better average
measure, it is often the practice to divide the whole corpus into several sets
and to change the roles of training and test corpora among them, instead of a
fixed division between the two corpora. The evaluation based on these alternated
training/test corpora is called cross-validation.

We should bear in mind that the intrinsic evaluation results from the manually
annotated corpora may not reflect the system performance on real data, since the
test corpus often has the same origin as the training corpus (Caporaso et al.,
2008). We should thus assess the representativeness of the test corpus for the
real world tasks during the phase of corpus construction.

Since there is the cost-dependent limitation in the corpus construction, we
may promote our systems by comparing with others. Many workshops have been
held for evaluating text mining solutions against shared tasks in the biomedical
domain, including the KDD Challenge Cup (Yeh et al., 2002), Biocreative I
(Hirschman et al., 2005) and II (Morgan et al., 2008; Krallinger et al., 2008),
TREC Genomics (Hersh and Voorhees, 2009), and BioNLP Shared Task on Event
Extraction (Kim et al., 2009). U-Compare provides an automated means for
comparing text mining systems (Kano et al., 2009).
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7.5 Success stories

Text mining empowered by natural language processing provides techniques that
contribute to knowledge discovery, as a part of interactive information retrieval
applications or integrated into analytic bioinformatics solutions. In this section
we present selected examples of success stories that have enabled knowledge
discovery based on the literature analysis techniques.

7.5.1 Interactive literature analysis

Many interactive Web solutions have been widely exploited for knowledge dis-
covery tasks such as biomedical curation work. They help users improve their
access to information that is difficult to retrieve otherwise. The retrieval engines
identify such information from retrieved documents in a pre-processing way to
ensure that they can on the fly produce the results that meet user’s demands
reflected in user queries. Since released, they have been widely used by biomed-
ical researchers and bioinformaticians. Please note that only a small number of
the successful systems employ deep NLP techniques like parsing. Other solu-
tions have usually been optimized to meet specific needs in the domain by using
reliable but rather unsophisticated methods, for example co-occurrence analysis.
Table 7.3 shows the Web addresses of the services.

Table 7.3 Example text mining services and their addresses.

Service Web address

EBIMed www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp
GoPubMed www.gopubmed.com/web/gopubmed/
iHOP www.ihop-net.org/UniPub/iHOP/
Textpresso www.textpresso.org/

Textpresso is an information retrieval system that provides access to the full
texts of scientific articles, and tags terms and ontology concepts on phrases and
sentences (Mueller et al., 2004). The ontology concepts not only denote entity
types (e.g., gene, cell) but also relationships (e.g., regulation, localization) and
properties (e.g., biological process). Terms and ontology concepts are integrated
into a lexicon and recognized by the system using dictionary-based methods
and regular expressions associated with the ontology concepts. This ontological
annotation enables users to semantically restrict their queries with the same
ontology concepts. Relations such as protein–protein interactions are identified
by using co-occurrence analysis. The system allows users to integrate their own
lexical resources into the system and can therefore be adapted for individual
curation needs.
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Two research teams have processed the complete set of MEDLINE abstracts
to generate networks of related genes (Jenssen et al., 2001; Hoffmann and
Valencia, 2005). Both systems collect co-occurrences of any two gene names
in the same sentence and create gene interaction networks based on the co-
occurrences. In the case of iHOP (Hoffmann and Valencia, 2005), the genes
are in addition linked to the corresponding entries of Entrez Gene and UniProt.
The interface of iHOP enables navigation from the gene of an initial query to its
interaction partners and delivers evidence sentences for the interactions. The com-
plete network of iHOP contains more than 80 000 genes. Altogether, the canned
results gathered from the comprehensive analysis of MEDLINE enable efficient
knowledge discovery for any bioinformatician working in the analysis of genetic
interactions. For example, the content of iHOP can be screened for seeking inter-
actions that have not yet been reported elsewhere. A small gene network from
an expression analysis can be compared against the most frequently mentioned
interactions of iHOP to identify regulatory mechanisms in the network.

Another Web application, GoPubMed , provides a hierarchical classification of
retrieved documents (Doms and Schroeder, 2005). Given a user query, it retrieves
matched documents from MEDLINE, classifies them based on GO concepts and
MeSH terms assigned to them in an offline manner, and visualizes the classi-
fication according to the hierarchical structures of Gene Ontology and MeSH.
The service also provides a statistical overview of the whole search results in
terms of, for example, publication year, journal, and top terms, and generates a
textual summary for each document according to the given query. Navigation of
the documents is directed by the user’s selection of semantic categories, which
fit to his interest.

EBIMed is a text mining system that summarizes co-occurrences of terms
from retrieved documents (Rebholz-Schuhmann et al., 2007b). Given a user
query, it retrieves relevant MEDLINE abstracts together with all mentions of
proteins, Gene Ontology concepts, drugs, and species in the abstracts from a
pre-processed index. Co-occurrences of the terms are gathered on the fly from
sentences of the MEDLINE abstracts and displayed in the form of a table. Alto-
gether, the tool shows an overview of the domain, which is represented by the
query, with regard to term associations, and helps us identify important term
relations, either explicitly or implicitly stated, within the domain. EBIMed has
been extensively exploited for knowledge discovery, for example to generate the
STITCH database (Kuhn et al., 2008).

7.5.2 Integration into bioinformatics solutions

The integration of text mining solutions into bioinformatics applications has con-
tributed to a number of knowledge discovery tasks. One of the most successful
applications is the identification of protein–protein interactions from the liter-
ature for constructing a protein network (Blaschke et al., 1999; Jenssen et al.,
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2001; Hoffmann and Valencia, 2005; Krallinger et al., 2008). Further work is
ongoing to prove the relevance of the generated data (see BioCreative3) and to
construct a pathway from interactions (Oda et al., 2008).

Another important application is the functional annotation of genes and pro-
teins with ontology concepts found in the context of the gene and protein men-
tions in text. We distinguish solutions that identify explicitly stated associations
between the genes and the ontology concepts from text, which is a text min-
ing task (Couto et al., 2006; Gaudan et al., 2008), from solutions that annotate
‘unknown’ genes with concepts that are already annotated to similar ‘known’
genes, which is a data mining task (Groth et al., 2008).

Text mining is being successfully applied to specific knowledge discovery
tasks, meeting the needs of lab scientists at hand. For instance, large scale liter-
ature analyses have been performed for a number of protein families, including
transcription factors, ubiquitin-protein ligases, protein kinases, and G protein-
coupled receptors (Rodriguez-Penagos et al., 2007; Lee et al., 2008; Krallinger
et al., 2009; Winnenburg et al., 2009). Recent works deal with the functional
annotation of individual mutations of genes and the changes of protein residues
from the literature (Rebholz-Schuhmann et al., 2004; Nagel et al., 2009). Some
of them focus on a particular protein family, for example lipase and amylase
enzymes to predict the stability and the disease relevance of mutations in proteins
(Yeniterzi and Sezerman, 2009).

7.5.3 Discovery of knowledge from the literature

We here introduce several text mining applications that have led to the discovery
of new knowledge in biomedicine.

The simple but significant task of relevant term recommendation has been
successfully applied to many domains. Spasic and colleagues (Spasic et al.,
2008) used 495 seed terms that describe methods for the analysis of metabolic
processes and identified 2612 new relevant terms. Waagmeester and colleagues
(Waagmeester et al., 2009) used a similar approach to extract 37 terms relevant
to the carotenoid pathway from a total of 89 086 terms. Thirteen terms among the
relevant terms were eventually added to the official resource of the carotenoid
pathway by curators.

The association of the literature with the results from expression array exper-
iments has also led to many scientific discoveries. Hettne and colleagues (Hettne
et al., 2007) showed that NF-kB is located at the center of a network whose
nodes are all involved in the complex regional pain syndrome. They concluded
that NF-kB must have an important role in the genesis of the syndrome. Jelier and
colleagues (Jelier et al., 2007) used text-derived concept profiles to annotate the
results from microarray experiments. They observed from their experiments that
lysosomal proteins are over-expressed in prostate cancer in contrast to the concept
profiles of other cancers and concluded that lysosomes may play a significant role

3 www.biocreative.org/
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in the development of prostate cancer. More general approaches have generated
similarity profiles for genes and proteins to transfer their functions to similar
genes and proteins (Sanfilippo et al., 2007) or identify novel nuclear proteins
which have not been attributed to this category before (Schuemie et al., 2007).

Text mining has been also applied for chemical and drug analysis. Weeber
and colleagues (Weeber et al., 2003) focused on thalidomide, which had become
obsolete due to its embryo-pathogenic effects, and identified that it could have a
therapeutic effect in acute pancreatitis, chronic hepatitis C, Helicobacter pylori -
induced gastritis, or myasthenia gravis. Frijters and colleagues (Frijters et al.,
2007) annotated different kinds of carcinogens with concept profiles to identify
the biological processes that have been modified by the compounds. Unfortu-
nately, they could only identify those toxicity mechanisms that were already
known. Other researchers read structural information from the scientific literature
that helps to characterize chemical compounds with regards to their therapeutic
or toxicological potentials (Banville, 2006).

The pioneers in the field of knowledge discovery from the scientific literature
simply used the text features, not even terminological resources or concept pro-
files, to identify unpublished yet potential relations between concepts. Swanson
(1986) could automatically extract from the literature, and verify with experi-
ments, that fish oil has a therapeutic effect on Raynaud’s disease. With the same
approach, he also showed that a depletion of magnesium could be the cause of
migraine (Swanson, 1988) and that estrogen could be involved in the onset of
Alzheimer’s disease (Smalheiser and Swanson, 1996).

7.6 Conclusion

Knowledge discovery is a complex task which requires us to take into considera-
tion the background knowledge of the recipient of novel information. Knowledge
discovery is the primary goal of automatic literature analysis. We can distinguish
interactive use of text processing tools that enable efficient access to textual
information from fully automatic text processing that delivers normalized infor-
mation. The two approaches are complementary to each other and a large number
of public solutions make use of both.

In recent years, the text analysis community has made significant progress in
providing reliable and accurate solutions for the biomedical informatics domain,
where a number of successful solutions are being widely used. Still, this does not
exempt bioinformatics researchers from learning how to utilize and benefit from
existing solutions. In other words, good background knowledge about the under-
lying technology supports selecting the right solutions for the tasks under scrutiny.

The automatic analysis of the full body of scientific literature requires access
to all contents, including full texts of scientific papers. Great efforts are leading
to better access to the scientific literature, supported by public funds. As a result,
we expect that in the near future the scientific literature will be fully integrated
into the bioinformatics data resources.
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The full integration of the scientific literature along with the ready availability
of automatic text processing solutions will enable researchers to efficiently test
novel hypotheses against the scientific literature and also speed up the turnover
of new knowledge.
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Cimiano, P., Reyle, U., and Sarić, J. (2005) Ontology-driven discourse analysis for infor-
mation extraction. Data Knowl Eng , 55, 59–83.

Clark, S. and Curran, J.R. (2007) Formalism-independent parser evaluation with CCG
and DepBank, in Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics, Prague, Czech Republic, 23–30 June 2007. Association for
Computational Linguistics, Stroudsburg, PA, pp. 248–55.

Clegg, A.B. and Shepherd, A.J. (2007) Benchmarking natural-language parsers for bio-
logical applications using dependency graphs. BMC Bioinformatics , 8, 24.

Cohen, A.M. and Hersh, W.R. (2005) A survey of current work in biomedical text mining.
Brief. Bioinformatics , 6(1), 57–71.

Cohen, K.B. and Hunter, L. (2008) Getting started in text mining. PLoS Comput. Biol.,
4(1), e20.

Cohen, K.B., Fox, L., Ogren, P.V., and Hunter, L. (2005) Empirical data on corpus design
and usage in biomedical natural language processing. AMIA Annu Symp Proc, 2005,
156–60.

Corney, D. P. A., Buxton, B.F., Langdon, W.B., and Jones, D.T. (2004) BioRAT: extract-
ing biological information from full-length papers. Bioinformatics , 20(17), 3206–13.

Couto, F.M., Silva, M.J., Lee, V., et al. (2006) GOAnnotator: linking protein GO anno-
tations to evidence text. J Biomed Discov Collab, 1(1), 19.

Daraselia, N., Yuryev, A., Egorov, S., et al. (2004) Extracting human protein interactions
from MEDLINE using a full-sentence parser. Bioinformatics , 20(5), 604–11.

Divoli, A., Hearst, M.A., and Wooldridge, M.A. (2008) Evidence for showing gene/protein
name suggestions in bioscience literature search interfaces. Pac Symp Biocomput ,
568–79.

Doms, A. and Schroeder, M. (2005) GoPubMed: exploring PubMed with the Gene Ontol-
ogy. Nucleic Acids Res., 33(Web server), W783–6.

Donnelly, M., Bittner, T., and Rosse, C. (2006) A formal theory for spatial representation
and reasoning in biomedical ontologies. Artif Intell Med , 36, 1–27.

Dudley, J. and Butte, A.J. (2008) Enabling integrative genomics analysis of high-impact
human diseases through text mining. Pac Symp Biocomput , 580–91.

Ellis, D. (2005) Ellis’s model of information-seeking behavior, in Theories of Information
Behavior (eds K.E. Fisher, S. Erdelez, and L. E. F. McKechnie), Information Today,
Inc., Medford, NJ, pp. 138–42.

Erhardt, R. A. A., Schneider, R., and Blaschke, C. (2006) Status of text-mining techniques
applied to biomedical text. Drug Discov. Today , 11(7-8), 315–25.



162 KNOWLEDGE-BASED BIOINFORMATICS

Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1996) Advances in
Knowledge Discovery and Data Mining , AAAI Press, Menlo Park, CA.

Frijters, R., Verhoeven, S., Alkema, W., et al. (2007) Literature-based compound profiling:
application to toxicogenomics. Pharmacogenomics , 8, 1521–34.

Frijters, R., Heupers, B., van Beek, P., et al. (2008) CoPub: a literature-based key-
word enrichment tool for microarray data analysis. Nucleic Acids Res., 36(Web server),
W406–10.

Fyshe, A., Liu, Y., Szafron, D., et al. (2008) Improving subcellular localization prediction
using text classification and the gene ontology. Bioinformatics , 24(21), 2512–17.

Gaudan, S., Yepes, A., Lee, V., and Rebholz-Schuhmann, D. (2008) Combining evidence,
specificity, and proximity towards the normalization of gene ontology terms in text.
EURASIP J Bioinform Syst Biol , 2008, 342746.

Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology.
Nature Genet., 25, 25–9.

Gerstein, M. and Krebs, W. (1998) A database of macromolecular motions. Nucleic Acids
Res., 26(18), 4280–90.

Groth, P., Weiss, B., Pohlenz, H.D., and Leser, U. (2008) Mining phenotypes for gene
function prediction. BMC Bioinformatics , 9, 136.

Hahn, U., Tomanek, K., Buyko, E., et al. (2009) How feasible and robust is the automatic
extraction of gene regulation events? A cross-method evaluation under lab and real-life
conditions, in Proceedings of the Workshop on BioNLP, Boulder, Colorado, 4–5 June
2009. Association for Computational Linguistics, Stroudsburg, PA, pp. 37–45.

Hakenberg, J., Plake, C., Leaman, R., et al. (2008) Inter-species normalization of gene
mentions with GNAT. Bioinformatics , 24(16), i126–32.

Hao, Y., Zhu, X., Huang, M., and Li, M. (2005) Discovering patterns to extract protein-
protein interactions from the literature: Part II. Bioinformatics , 21(15), 3294–300.

Hearst, M.A., Divoli, A., Guturu, H. et al. (2007) BioText search engine: beyond abstract
search. Bioinformatics , 23(16), 2196–7.

Heinze, D.T., Morsch, M.L., and Holbrook, J. (2001) Mining free-text medical records.
Proc AMIA Symp., 2001, 254–8.

Hersh, W. and Voorhees, E. (2009) TREC genomics special issue overview. Inf Retr
Boston , 12(1), 1–15.

Hettne, K.M., de Mos, M., de Bruijn, A.G., et al. (2007) Applied information retrieval
and multidisciplinary research: new mechanistic hypotheses in complex regional pain
syndrome. J Biomed Discov Collab, 2, 2.

Hirschman, L., Yeh, A., Blaschke, C., and Valencia, A. (2005) Overview of BioCreAtIvE:
critical assessment of information extraction for biology. BMC Bioinformatics , 6(1),
S1.

Hirst, G. (2004) Ontology and the lexicon, in Handbook on Ontologies (eds S. Staab and
R. Studer), Springer, Karlsruhe, pp. 209–30.

Hoffmann, R. and Valencia, A. (2005) Implementing the iHOP concept for navigation of
biomedical literature. Bioinformatics , 21(Suppl 2), ii252–8.

Howe, D. and Rhee, S.Y. (2008) The future of biocuration. Nature, 455(4), 47–50.

Huang, M., Zhu, X., Hao, Y., et al. (2004) Discovering patterns to extract protein-protein
interactions from full texts. Bioinformatics , 20(18), 3604–12.



AUTOMATIC TEXT ANALYSIS 163

Hunter, L., Lu, Z., Firby, J., et al. (2008) OpenDMAP: an open source, ontology-driven
concept analysis engine, with applications to capturing knowledge regarding protein
transport, protein interactions and cell-type-specific gene expression. BMC Bioinfor-
matics , 9, 78.

Jaeger, S., Gaudan, S., Leser, U., and Rebholz-Schuhmann, D. (2008) Integrating protein-
protein interactions and text mining for protein function prediction. BMC Bioinformat-
ics , 9(8), S2.

Jelier, R., Jenster, G., Dorssers, L.C., et al. (2007) Text-derived concept profiles support
assessment of DNA microarray data for acute myeloid leukemia and for androgen
receptor stimulation. BMC Bioinformatics , 8, 14.

Jensen, L.J., Saric, J., and Bork, P. (2006) Literature mining for the biologist: from
information retrieval to biological discovery. Nat. Rev. Genet., 7, 119–29.

Jenssen, T.K., Laegreid, A., Komorowski, J., and Hovig, E. (2001) A literature network
of human genes for high-throughput analysis of gene expression. Nature Genet., 28(1),
21–8.

Jimeno-Yepes, A., Jimenez-Ruiz, E., Lee, V., et al. (2008) Assessment of disease named
entity recognition on a corpus of annotated sentences. BMC Bioinformatics , 9(3), S3.

Jimeno-Yepes, A., Berlanga-Llavori, R., and Rebholz-Schuhmann, D. (2009) Ontology
refinement for improved information retrieval. Inf Process Manag , in press.

Johnson, H.L., Baumgartner, W.A., Krallinger, M., et al. (2007) Corpus refactoring: a
feasibility study. J Biomed Discov Collab, 2, 4.

Kano, Y., Baumgartner Jr, W.A., McCrohon, L., et al. (2009) U-Compare: share and
compare text mining tools with UIMA. Bioinformatics , 25(15), 1997–8.

Karamanis, N., Seal, R., Lewin, I., et al. (2008) Natural language processing in aid of
FlyBase curators. BMC Bioinformatics , 9, 193.

Kim, J.D., Ohta, T., Pyysalo, S., et al. (2009) Overview of BioNLP’09 shared task on
event extraction, in Proceedings of the Workshop on BioNLP, Boulder, Colorado;
Companion Volume: Shared Task on Event Extraction, 5 June 2009. Association for
Computational Linguistics, Stroudsburg, PA, pp. 1–9.

Kim, J.J. (2006) Bidirectional incremental approach to efficient information extrac-
tion: applications to biomedicine. PhD dissertation. Department of Computer Science,
KAIST, South Korea.

Kim, J.J. and Rebholz-Schuhmann, D. (2008) Categorization of services for seeking
information in biomedical literature: a typology for improvement of practice. Brief.
Bioinformatics , 9(6), 452–65.

Kim, J.J., Zhang, Z., Park, J.C., and Ng, S.K. (2006) BioContrasts: extracting and exploit-
ing protein-protein contrastive relations from biomedical literature. Bioinformatics ,
22(5), 597–605.

Kim, J.J., Pezik, P., and Rebholz-Schuhmann, D. (2008) MedEvi: retrieving textual evi-
dence of relations between biomedical concepts from Medline. Bioinformatics , 24(11),
1410–12.

Kirsch, H., Gaudan, S., and Rebholz-Schuhmann, D. (2006) Distributed modules for text
annotation and IE applied to the biomedical domain. Int J Med Inform , 75(6), 496–500.

Klein, D. and Manning, C.D. (2003) Accurate unlexicalized parsing, in Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo



164 KNOWLEDGE-BASED BIOINFORMATICS

Convention Center, Sapporo, Japan, 7–12 July 2003. Association for Computational
Linguistics, Stroudsburg, PA, pp. 423–30.
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8.1 Introduction

Over the past decade, technological advances such as whole genome sequencing,
microarray technology and high-throughput proteomics techniques have revolu-
tionized our approach to life science research. This progress in technology has
resulted in the generation of large amounts of data at a relatively low cost. Conse-
quently, although the study of specific pathways or individual molecules remains
a major approach to understanding the intricate molecular and cellular details
associated with biological processes and disease, the bottleneck in biological
sciences has shifted from data generation to data analysis.

Creating ways to organize, archive, and interpret this flood of data has become
a major research activity in its own right. Computer scientists are essential in
making raw biological data comprehensible and accessible to both humans and
computers, and one method has been to provide the raw data in a standardized for-
mat, made available through a database. However, there are important, but often-
overlooked steps, between the initial design of a database and the point at which
the end user can access the data: the addition, standardization, and maintenance

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
 2010 John Wiley & Sons, Ltd
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of the data. This is the process of biocuration, which involves the review and
standardization of the raw data as well as adding valuable additional information.

Biocurators have been described as the ‘museum cataloguers of the Inter-
net age’ (Bourne and McEntyre, 2006). However, in addition to displaying and
preserving raw biological data in a user-friendly manner, biocurators are also
required to interpret complex scientific literature and extract the relevant data in
an efficient and consistent manner. Thus, there are two types of curation essen-
tial to the life sciences: ‘data submission curation’ and ‘value-added curation’
(Thornton, 2009).

8.1.1 Data submission curation

Researchers submitting data to a database will often use a variety of input meth-
ods, for example by email, as a spreadsheet, a text document, or via a database’s
own online submission form. Data submission curators ensure the submission is
formatted in a consistent manner and will often request further information from
the submitters as required. Once the quality assurance checks are complete, the
data is displayed and may be credited to the original submitters within the entry.
The sequence databases GenBank (www.ncbi.nlm.nih.gov/Genbank/index.html;
Benson et al., 2008) and EMBL-Bank (www.ebi.ac.uk/embl/; Sterk et al., 2007)
are two examples of databases that primarily consist of raw biological data that
is submitted directly, and ‘owned’ by researchers.

8.1.2 Value-added curation

Value-added curation can be defined as organizing or interpreting biological
data in order to add an extra layer of meaning. For example, when a scientist
submits a nucleotide sequence to EMBL-Bank, they are encouraged to
include additional information on the entry, including gene or protein names,
sequence features, taxonomic and citation information. UniProt Knowledgebase
(UniProtKB) biocurators will further curate the corresponding translation,
annotating additional information including tissue specificity and protein domain
information, as well as information from the literature describing the known
function, associated disease, post-translational modifications, cofactors, and
regulators retrieved from published scientific literature or by cross-referencing
specialist external resources. There are numerous value-added biocuration
groups around the world such as UniProtKB (UniProt Consortium, 2008),
National Center for Biotechnology Information (NCBI; Sayers et al., 2009),
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al., 2008),
Reactome (Matthews et al., 2009), Human Unidentified Gene-Encoded Large
Proteins (HUGE; Kikuno et al., 2004), and Ensembl (Hubbard et al., 2009).

UniProtKB curators also annotate using biological ontologies, including
UniProtKB keywords (www.expasy.ch/cgi-bin/keywlist.pl) and Gene Ontol-
ogy (GO) terms (www.geneontology.org). The Gene Ontology Consortium
(GOC) provides a hierarchical controlled vocabulary of terms to describe the
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accumulated functional knowledge of a gene product, with respect to its
molecular functions, the biological processes it is involved in and its sub-
cellular location. Many groups, in addition to UniProtKB, use GO to provide
value-added curation of gene products1, for species as varied as Escherichia
coli and Arabidopsis thaliana to Mus musculus and Homo sapiens (Reference
Genome Group of the Gene Ontology Consortium, 2009). This chapter reviews
the GO resource, the annotation process, its usage, and its limitations.

8.2 Gene Ontology (GO)

High-throughput methodologies can provide a wide range of information, includ-
ing the detailed characterization of specific developmental or disease states, the
molecular composition of entire tissues, cells or organelles, or overviews of pro-
tein interaction networks. These methodologies are now providing researchers
with an increasingly detailed overview of complex molecular interactions within
a variety of cell or tissue types. In addition, these high-throughput methodologies
can be used for the initial characterization of newly sequenced genes. An impor-
tant aspect to this approach is the integration of results from high-throughput
investigations with data accumulated through the intensive study of single genes
or pathways; ensuring that data from different experimental approaches can be
used to inform other research projects.

For the past 10 years the GOC has been developing GO terms to describe the
functional attributes of proteins from all species in a consistent and computer-
readable manner. GO enables functional information, derived from a wide range
of sources, to be included in individual gene and protein records in biological
sequence databases and within high-throughput analysis software. In this way,
the GOC enables sequences to be classified and grouped together according to
their functional properties, and consequently improves data integration, bridging
the gap between data collation and data analysis (Gene Ontology Consortium,
2001; Ashburner et al., 2000; Dimmer et al., 2008; Lomax, 2005).

8.2.1 Gene Ontology and the annotation
of the human proteome

In 1998, the GOC was founded through collaborations between three model
organism databases: FlyBase, Saccharomyces Genome Database (SGD), and
Mouse Genome Informatics (MGI) (Ashburner et al., 2000). Over the last
10 years, the GOC has expanded to include a wide range of curation groups

1 GO annotations can be used to describe all functional gene products including RNAs. How-
ever, since the majority of functional, and therefore annotatable, gene products are proteins, the
remainder of this chapter refers to GO annotations in general being applied to proteins. Users
should also note that GO annotations are displayed in both gene databases such as NCBI Entrez
Gene (www.ncbi.nlm.nih.gov/sites/entrez?db=gene), and in protein databases such as UniProtKB
(www.uniprot.org/).
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annotating GO to many different species (Table 8.1). External groups have also
begun to supplement their data sets with GO terms, including AstraZeneca and
Celera Genomics.

As shown in Table 8.1, the majority of GOC members are model organ-
ism databases. However the annotation of GO terms to human proteins is being
achieved in a more distributed manner, with a variety of groups having con-
tributed GO annotations over the years. These groups have previously included
Proteome Inc., the Human Genome Database (GDB; Letovsky et al., 1998) and
the HUGO Gene Nomenclature Committee (HGNC; Bruford et al., 2008). Cur-
rently, a large proportion of human annotations (both manual and electronic) are
being contributed by the Gene Ontology Annotation group (GOA-UniProtKB) at
the European Bioinformatics Institute (EBI) (Barrell et al., 2009) and the British
Heart Foundation-funded Cardiovascular Initiative at University College London
(Lovering et al., 2008a) with additional annotations supplied by LIFEdb (Mehrle
et al., 2006), Reactome (Matthews et al., 2009), IntAct (Kerrien et al., 2007),
and the Human Proteome Atlas (Berglund et al., 2008).

8.2.2 Gene Ontology Consortium data sets

GO terms are provided as three separate vocabularies (ontologies) that provide a
descriptive framework for the normal ‘molecular functions’ of a protein, the ‘bio-
logical processes’ a protein is involved in and the ‘sub-cellular locations’ (‘cellu-
lar components’) in which the protein is located. For example, annotations for the
cytokine interleukin 6 (IL6 ) include the Molecular Function term: ‘interleukin-6
receptor binding’ (GO:0005138), the Biological Process term: ‘defense response
to virus’ (GO:0051607), and the Cellular Component term: ‘extracellular space’
(GO:0005576); whereas the annotations for the telomeric binding factor TERF1
include the Molecular Function term: ‘double-stranded telomeric DNA binding’
(GO:0003691), the Biological Process term: ‘negative regulation of telomerase
activity’ (GO:0051974), and the Cellular Component term: ‘chromosome,
telomeric region’ (GO:0000781). Depending on the amount of published data
available, gene and/or protein identifiers can be annotated with multiple GO
terms from any, or all, of the three gene ontologies (Figure 8.1).

The terms in GO are structured as directed acyclic graphs, where each term
can have multiple relationships to broader ‘parent’ and more specific ‘child’ terms
(Figure 8.2). This hierarchical structure produces a representation of biology that
allows a greater amount of flexibility in data analysis than would be afforded by
a format based on a simple list of terms. Users can exploit this structure to see
either a broad overview of the general functional attributes presented by a set
of data, or focus in on specific sections of the ontology to investigate in greater
detail (discussed in Section 8.6.3).

8.2.3 GO annotation methods

Annotations can be produced either by a curator reading published scientific
papers and manually creating each association or by a combination
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Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.1 Annotations associated with the protein CIDEA. This is a screenshot
from the QuickGO gene ontology browser (www.ebi.ac.uk/QuickGO/) of the GO
annotations associated with the human protein CIDEA. This protein has multi-
ple annotations associated to it in all three ontologies. Column key: 1, Type of
protein ID; 2, Protein ID; 3, Splice variant ID; 4, Gene symbol; 5, Taxon ID; 6,
Annotation qualifier; 7, GO term ID; 8, GO term name; 9, Evidence source refer-
ence; 10, Evidence code; 11, Homologous sequence for transferred annotations;
12, Ontology code; 13, Annotation date; 14, Acronym of the group that made the
annotation.

of computational techniques to produce electronic annotation sets (Camon et
al., 2003). Both methods have their own advantages and disadvantages, and
are carefully monitored and revised to ensure that conservative, high-quality
annotations are created.

The GOC has established standardized annotation procedures, and full
details can be obtained from the annotation guide on the GOC website (www
.geneontology.org/GO.annotation.shtml). Manual GO annotations provide
comprehensive, accurate, and information-rich summaries of the functional
knowledge for proteins. These detailed annotations are created by trained
curators, through the evaluation of experimental data available in pub-
lished scientific papers (Barrell et al., 2009; Hill et al., 2008; www.ebi.ac
.uk/GOA/annotationexample.html). For example, Nofer et al. demonstrated
that a mutation in the ABCA1 gene was associated with Tangier disease
and that fibroblasts derived from this patient had reduced APOA1-induced
intracellular signaling (Nofer et al., 2006). Tangier disease is characterized by
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Figure 8.2 Gene Ontology is structured as a directed acyclic graph. This is a
screenshot from QuickGO showing the Molecular Function and Cellular Com-
ponent terms associated with the human CIDEA protein as a chart. This graph
view illustrates the directed acyclic nature of the GO. For example, the Molec-
ular Function term ‘protein homodimerization activity’ (GO:0042803) is a type
of ‘identical protein binding’ (GO:0042802). Online the different colors of the
linking lines help to visualise the specific nature of the relationship between
parent and child terms. For example ‘organelle envelope’ (GO:0031967) is
part of a ‘membrane-bounded organelle’ (GO:0043227). Whereas the Cellular
Component term ‘nucleus’ (GO:0005634) is a type of ‘intracellular membrane-
bounded organelle’ (GO:0043231). Likewise the Cellular Component term ‘mito-
chondrion’ (GO:0005739) also is a type of ‘intracellular membrane-bounded
organelle’ (GO:0043231). Thus the GO is able to accurately represent biological
information in a qualitative manner.
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severe high-density lipoprotein deficiency, leading to cholesterol deposition
in tissue macrophages and premature atherosclerosis. The experimental data
presented in this paper led to the annotation of the ABCA1 protein with three
Biological Process GO terms ‘G-protein coupled receptor protein signaling
pathway’ (GO:0007186), ‘cholesterol efflux’ (GO:0033344), and ‘Cdc42 protein
signal transduction’ (GO:0032488), and three Molecular Function GO terms
‘small GTPase binding’ (GO:0031267), ‘apolipoprotein A-I receptor activity’
(GO:0034188) and ‘apolipoprotein A-I binding’ (GO:0034191). For well-studied
proteins like TGFB1, the manual annotation process could take many days
(www.ebi.ac.uk/QuickGO/GProtein?ac=P01137); in contrast, the annotation of
a more recently described protein, like CIDEA, may only take a few hours
(Figure 8.1; www.ebi.ac.uk/QuickGO/GProtein?ac=O60543).

8.2.3.1 Evidence codes

All GO annotations refer to the source of evidence that supports the creation of the
annotation (such as a NCBI PubMed identifier or a reference to a computational
method), as well as an ‘evidence code’, which indicates the category of evidence
that was identified in the associated reference. Each GO annotation also includes
the date the annotation was made and an acronym for the group submitting the
annotation data (column 14, Figure 8.1).

At the time of writing, there are 18 evidence codes (Table 8.2), which can be
split into three broad categories: evidence codes which indicate the annotation is
based on experimental results (such as an enzyme assay); from non-experimental
statements provided by an author or inferred by a curator (for instance inferring
a nuclear localization for an in vitro-characterized transcription factor or trans-
ferring annotations based on sequence similarity); and finally using evidence
from computational predictions. Users can utilize evidence codes to filter anno-
tation sets so that their data analysis includes only experimentally evidenced
annotations. However, the usefulness of filtering using evidence codes will, of
course, be dependent on the genome of interest. For well-annotated genomes,
such as yeast, evidence code-based filtering might be appropriate, whereas for
other genomes such as pig, bovine or even human, users often need to rely on
the complete annotation set to ensure that their sequences of interest are provided
with sufficient annotation data.

8.2.3.2 Annotation qualifiers

Occasionally, manual annotations include ‘qualifiers,’ to provide an additional
layer of information about the relationship between a protein and its associated
GO term. Three qualifiers are currently available:

(1) ‘colocalizes_with’ (which indicates a transient or peripheral association
of a protein with an organelle or protein complex (column 6, Figure 8.1));
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(2) ‘contributes_to’ (which implies that a protein facilitates, but does not
directly carry out, the function of the protein complex of which it is a
subunit);

(3) ‘NOT’ (used when there is conflicting published data, or when a protein
is found to not have a particular activity, location or process involvement,
which is in contrast to previous assumptions).

Although qualifiers are rarely used, these statements have an important impact in
changing the meaning of the associated annotation. Most importantly, the ‘NOT’
qualifier leads to an opposite interpretation of an annotation, and users of large
data sets are advised to ensure ‘NOT’ annotations are appropriately applied (or
excluded) by the large-scale functional analysis tool of their choice.

Table 8.2 Gene Ontology evidence codes.

Evidence code Description

Based on published experimental evidence
EXP inferred from EXPeriment
IDA Inferred from Direct Assay
IEP Inferred from Expression Pattern
IGI Inferred from Genetic Interaction
IMP Inferred from Mutant Phenotype
IPI Inferred from Physical Interaction
Based on computational analysis evidence
IEAa Inferred from Electronic Annotation
IGC Inferred from Genomic Context
ISA Inferred from Sequence Alignment
ISO Inferred from Sequence Orthology
ISM Inferred from Sequence Model
ISS Inferred from Sequence or structural Similarity
RCA inferred from Reviewed Computational Analysis
Not supported by experimental evidence within the reference used
IC Inferred by Curator
TASb Traceable Author Statement
NASc Non-traceable Author Statement
ND No biological Data available
NRd Not Recorded
aThis code denotes an electronic annotation based on an automated computational orthol-
ogy statement or an automated computational prediction of function. It denotes an auto-
mated electronic annotation and cannot be applied to manual annotations.
bThe reference provides information about the source of the evidence supporting the
statement used for the annotation.
cThe reference does not provide information about the source of the evidence supporting
the statement used for the annotation.
dThis code is now obsolete.
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8.2.4 Different approaches to manual annotation

A variety of approaches have been taken to provide good quality manual anno-
tations to the human proteome. After the initial fast-track approach based on
reading abstracts, a more in-depth approach has developed in which the GO
curator reads the method and results sections of each paper in detail. The curator
will confirm the species of the investigated gene or protein (often in referenced
papers) and identify the experimental data supporting the statements made in the
abstract, introduction or discussion.

For proteins with a large number of associated papers, the curator will select
a recent review and use that as a basis for identifying papers with experi-
mental data for annotation. However, due to the large volume of literature
associated with mammalian proteins, curators often need to focus on provid-
ing the broadest range of annotations from the most recent papers. Interpretation
of experimental data and the subsequent selection of appropriate GO terms to
associate with a protein record requires expertise. In addition, the majority of
curators are reading papers from a wide range of biological fields, covering the
detailed information of biochemical reactions and signal transduction to more
complex developmental processes and disease phenotypes. It is therefore chal-
lenging to consistently evaluate results from different biological methods and
associate all of the appropriate GO terms to each protein record. Annotation con-
sistency is an important focus of the GOC, and a number of methods have been
applied, such as the Gene Ontology Normal Usage Tracking System (GONUTS,
http://gowiki.tamu.edu/wiki/index.php/Main_Page), which has enabled GO cura-
tion projects to compare GO terms associated with one protein across multiple
species. For example, during the annotation of proteins involved in reverse
cholesterol transport, over 50 annotations were identified as missing from 14
protein records through the use of GONUTS (Table 8.3).

8.2.5 Ontology development

At the time of writing, over 30 000 GO terms exist across the three Molec-
ular Function, Biological Process and Cellular Component ontologies (March
2010). Although the three ontologies are in a constant state of expansion and
revision, GO term identifiers remain stable and revisions can be tracked. And
despite this wealth of existing terms, requesting new terms is an integral aspect
of both manual and electronic GO curation. For example, during the annotation
of human apolipoproteins, a series of GO terms needed to be requested to enable
a more detailed description of the extracellular location of these proteins (e.g.,
‘high-density lipoprotein particle’ (GO:0034364) was requested, rather than use
the pre-existing, more general term ‘plasma lipoprotein particle’ (GO:0034358)),
their function as receptor ligands (e.g., ‘very-low-density lipoprotein receptor
binding’ (GO:0070326) was created, rather than apply the term ‘receptor binding’
(GO:0005102)), and their roles within the cardiovascular system (e.g., ‘chy-
lomicron remnant clearance’ (GO:0034382) was requested, rather than apply
‘macromolecular complex disassembly’ (GO:0032984)).
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New GO terms are requested through the GO editorial team using the online
project software SourceForge (http://sourceforge.net/). SourceForge enables all
GO users to request changes or additions to GO, and to contribute to discussions.
However, there is no automated system available to associate the new GO terms
to relevant proteins. Therefore, after a new GO term has been created, the curator
or bioinformatician needs to ensure it is consistently associated with the relevant
protein records.

8.3 Comparative genomics and electronic
protein annotation

Manual annotation sourced directly from published experimental data is often
only available for proteins from a limited number of model organisms, and
often investigations on different sets of orthologs apply non-overlapping func-
tional assays. Additionally, the exponential rise in the numbers of genomes
being sequenced means it is not possible for manual annotation methods alone
to provide sufficient annotation coverage. This situation is exacerbated by the
expense of funding manual curators and means that there is often an inconsis-
tent set of experimentally evidenced annotations applied to genes from different
model organism species. Therefore, methods that project experimentally evi-
denced annotations to orthologous or homologous genes have been developed.
Transferring annotations between proteins can be performed either manually
or electronically. However, electronic methods of annotation are essential in
enabling the annotation of non-model organism species, where little direct experi-
mental evidence is available, and where it is unlikely that a curation effort would
be funded. In all cases it is important that the user is able to identify those
annotations which have been transferred in this manner, that they understand the
methodology used to create an annotation set, and finally are able to trace back
to the original annotation which was applied so that a full understanding of the
origins of such annotation predictions can be obtained.

8.3.1 Manual methods of transferring functional annotation

Manual transfers of GO annotations are often carried out by curators to ensure
that complete and consistent annotation sets are provided for genes from closely
related species. In such circumstances, curators are responsible for reviewing
the evidence to ensure that a conservative and accurate transfer of function is
carried out. Such annotations are often created by a curator after all the published
experimental data has been captured, using the manual evidence code ‘Inferred by
Sequence or structural Similarity’ (ISS) for the projected annotations, to highlight
where such manually verified transfers of function have been carried out.

As well as simple projections by sequence similarity, annotation groups are
increasingly involved in larger, manual annotation transfers using comparative
genomics. Such transfer methods often infer functions of an ancestral gene,
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based on the annotations that exist for modern descendants, and propagate such
ancestral annotations to other descendant genes by inheritance relationships. This
latter method allows a more systematic and conservative transfer of functional
annotations. This approach has been taken by the Reference Genomes project,
which has applied a phylogenetic tree-based approach to identify ‘ortholog
clusters’ to aid in providing comprehensive GO annotation for 12 key model
organism genomes in the GOC (Reference Genome Group of the Gene Ontology
Consortium, 2009).

8.3.2 Electronic methods of transferring
functional annotation

Manually projecting annotations does help produce a consistent data set for cura-
tors needing to provide a comprehensive set of annotations for specific model
organism species. However, such an approach is inadequate when attempting to
provide sufficient annotation coverage for the exponentially increasing number
of sequences now available from economically important, non-model organism
species. Electronic methods, which transfer annotations across species, provide
essential annotations for non-model organism species. Such methods also aid
in the generation of a consistent annotation set for manually curated model
organism species.

8.3.2.1 Electronic annotation transfer based on homology

Computational annotation techniques often use homology to project annotations
and are used by software engineers to cope with the ever-increasing annotation
backlog. The Brassica ASTRA team has done exactly this, incorporating the TAIR
GO annotation from Arabidopsis sequences that had highly similar BLASTx
matches to Brassica sequences. Using this method, 43% of Brassica sequences
were supplied with electronic GO annotation (Love et al., 2005).

A number of software teams have also released tools to provide this type of
service, which often uses BLAST algorithms to find homologs to GO-annotated
sequences. Matching sequences are scored (often using the BLAST E-value),
and GO terms for the matched sequences are retrieved and applied to the input
sequence. Tools allow submission of either single or multiple cDNA or pro-
tein sequences (GoFigure (Khan et al., 2003), GOtcha (Martin et al., 2004),
GOblet (Groth et al., 2004), and OntoBlast (Zehetner, 2003)), or accept stretches
of genomic sequence (Blast2GO (Conesa et al., 2005)). When annotations are
transferred automatically between homologs the evidence code ‘Inferred from
Electronic Annotation’ (IEA) is used.

8.3.2.2 Electronic annotation transfer based on phylogeny

It has been recognized that large-scale functional transfer from homologous
sequences can cause high levels of error (Artamonova et al., 2007), so elec-
tronic annotation methods which transfer annotations based on phylogenetic
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relationships are increasingly favored. The Ensembl group supply GO annotations
based on their Compara phylogenetic method (Flicek et al., 2008) by transferring
experimentally evidenced annotations between over 40 different species, resulting
in the creation of 455,000 annotations (GOA UniProt release 81.0). Tools such
as SIFTER (Engelhardt et al., 2005) and GOAnno (Chalmel et al., 2005) also
offer users the ability to transfer annotations between protein sequences based
on phylogenetic relationships.

Whether the transfer of annotations is manual or electronic, care does need
to be taken as, of course, differences do exist between orthologs of very closely
related species. Transferred annotations must be kept up to date and the accuracy
of the GO term should be continually checked to ensure unsuitable terms are not
transferred between species; for example, biological process terms which describe
lactation should not be transferred from mammalian proteins to avian orthologs.

8.3.3 Electronic annotation methods

Almost 99% of the total number of GO annotations available from the GOC
are derived from automated computational prediction pipelines. These electronic
annotations are very important for the growing number of proteins from non-
model organism species, which often have had no experimental characterization,
but are also invaluable for well-studied genomes, providing consistent high level
annotations across all species. One of the widely used methods of generating
automated electronic annotations is to firstly manually link (or map) GO terms
to corresponding concepts in the controlled vocabularies used by the external
databases. The resulting files provide translation tables or ‘mappings’ between
these two vocabularies, which are then used to generate GO annotations for
those gene/protein identifiers which have previously been curated with the exter-
nal controlled vocabulary. UniProtKB keywords (www.uniprot.org/keywords/),
Enzyme Commission (EC) numbers (NC-IUBMB and Webb, 1992), and Inter-
Pro domains (Hunter et al., 2009) are three external, controlled vocabularies
used for mapping to GO, which generate large numbers of annotations for
many species. The second widely used electronic annotation method is the auto-
matic transfer of manual annotations to orthologs in closely related species (see
Section 8.3.2.2).

Each GO annotation from an automated electronic method such as mapping
or Compara (Section 8.3.2.2) is given the evidence code ‘Inferred from Elec-
tronic Annotation’ (IEA) (Table 8.2). Each IEA annotation is referenced with a
‘GO_REF’ identifier from the GO Reference Collection (www.geneontology.org/
cgi-bin/references.cgi). The GO reference collection is a publicly available set of
abstracts that describe specific methods or sources of data that have resulted in
the generation of annotations where a specific literature reference is unavailable.

With a conservative usage, electronic annotation predictions can be highly
accurate; the UniProtKB keyword, EC number, and InterPro to GO mappings
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Figure 8.3 Manual annotations tend to be more granular than electronic annota-
tions. In this screenshot, the graph displays the non-regulation Biological Process
terms for the human protein EDN2. The circled terms are electronic annota-
tions and the boxed terms are manual annotations. The term ‘vasoconstriction’
(GO:0042310) has been associated both manually and electronically. The manu-
ally annotated terms ‘artery smooth muscle contraction’ (GO:0014824) and ‘vein
smooth muscle contraction’ (GO:0014826) are descendants of the two electroni-
cally associated terms, illustrating the point that manual annotations tend to be
more granular than electronic annotations. The other manual annotations are
unrelated to the electronic annotations, thus in this case the manual annotations
are also giving a broader coverage of the Biological Process ontology.

have been found to predict an appropriate GO term 91–100% of the time (Camon
et al., 2005). However, the GO terms predicted by computational methods are, in
general, less specific (or less granular) than those chosen manually (Figure 8.3),
and are highly reliant on the quality and breadth of the manual annotation work
carried out in external databases.

8.4 Community annotation

Biocurators are highly trained in the interpretation of the literature to create
annotations using a controlled vocabulary. However, biocurators cannot expect
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to understand each gene and protein as thoroughly as a lab-based scientist who
has made a career out of researching a particular protein or understanding a
particular investigative technique. Thus getting the input of lab-based scientists
continues to be an ongoing concern for the majority of curation groups. As such,
there are a number of recent outreach methods that curation groups have begun
to utilize with varying degrees of success, to bring about community involvement
in the annotation process.

8.4.1 Feedback forms

Most curation groups have some kind of feedback form on their websites.
Although this method is not widely used by researchers to comment on the
annotations associated with their proteins of interest, the Arabidopsis curation
group, TAIR, have successfully implemented a process whereby authors submit
functional information directly to them at the time of publication in the Plant
Physiology journal via an online submission form (Berardini, 2009; Ort and
Grennan, 2008). TAIR found that they received a 20% author response rate with
no author prompting, and this rose to 75% when curators prompted the authors.
The curation workload was not necessarily decreased as the authors tended to
put in all the information they knew about the protein, and not just the evidence
described in the submitted paper, requiring curators to spend time finding
evidence for the additional annotations. However, this system has the benefit of
providing curators with an author contact for specific proteins in case further
information is needed for annotation. This system also has the added benefit of
promoting the annotation process to authors, which hopefully means the authors
may be more aware of the detail they need to include in their publications, in
order to assist the curation process.

8.4.2 Wiki pages

The GOC has created an editable Wiki system to enable research scientists,
and other interested parties, to review the GO annotation of their favorite pro-
tein and suggest additional information or changes, which would improve their
annotation.

The protein-specific wiki pages provide links to general information and exist-
ing GO annotation for a given human protein and its orthologs in other species.
Once registered, scientists can use the edit page option to add comments about the
protein annotation and to suggest additional references or missing terms. These
protein-specific pages are accessible via the GOC Wiki Community Annota-
tion Pages (http://wiki.geneontology.org/index.php/Main_Page) (Lovering et al.,
2008b, Lovering et al., 2009). However, at the time of writing, no lab-based
researchers have utilized these pages.

8.4.3 Community annotation workshops

There are two types of community annotation workshops that GOC members
undertake, ontology development workshops and annotation jamborees. Ontology
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development workshops are held when there is a need to develop a particular area
of the ontology on a large scale, and involve GO editors and expert researchers
from the relevant field. These workshops often result in a publication to publicize
the ontology changes, and this is a good incentive for researchers to participate.

The idea behind the annotation jamboree is to populate the data set with
annotations provided by researchers actively studying the proteins of interest. The
idea is that, as they are familiar with the research in their area, they will be able
to identify the key experimental papers easily. The National Institute of Allergy
and Infectious Diseases-funded Pathema group held a two-day annotation-training
jamboree in 2007 with the idea that trained scientists would continue to provide
annotation updates thereafter. Contributors are given recognition on the protein
page; however, Pathema found that after two years they had been sent only four
updates (Brinkac, 2009). Thus, biocurators continue to search for new ways to
encourage the research community to contribute to curation activities.

8.5 Limitations

As with any scientific data, it is important to appreciate the limitations associated
with GO data. Curation groups in the GOC acknowledge the limitations discussed
here, and where possible efforts are being made to address these issues.

8.5.1 GO cannot capture all relevant biological aspects

GO allows the curator to record the Biological Process, Molecular Function and
Cellular Component aspects associated with a protein. However, GO does not
allow the capture of every single relevant biological aspect for each annotation.

For example, a study by Uronen-Hansson et al. showed that the human Toll-
like receptor 4 (TLR4) is present on the cell surface of monocytes, but immature
dendritic cells only express the protein intracellularly (Uronen-Hansson et al.,
2004). The curator annotating this paper was able to make the cellular compo-
nent annotations: ‘integral to plasma membrane’ (GO:0005887) and ‘perinuclear
region of cytoplasm’ (GO:0048471), but was unable to state which cell type
each component annotation refers to. This distinction would be important for a
researcher using immature dendritic cells to study TLR4. GO allows the anno-
tation of both cellular components, but does not allow the curator to capture the
cell line context for each annotation.

Another aspect that is currently not captured is the target of the GO annotation.
For example, the protein SH3D19 is involved in the ectodomain shedding of
several proteins, including HBEGF, TGFA, AREG, and EREG (Tanaka et al.,
2004). From the publication by Tanaka et al., the curator was able to annotate the
process term ‘positive regulation of membrane protein ectodomain proteolysis’
(GO:0051044). However, GO does not allow the curator to also capture the
protein targets of this process annotation.

Inclusion of such data would provide highly valuable cross-ontology anno-
tations, and the GOC is currently investigating the possibility of allowing the
addition of such information into GO annotation.
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8.5.2 The ontology is always evolving

As GO develops, curators and editors are able to create new, more specific terms,
which describe the biology in greater detail. GO editors approve around 200 new
terms each month. Therefore, papers annotated prior to the development of new
terms could contain data that may have been captured more accurately if the
newer terms had existed at the time of the initial curation. With the volume
of literature available, it is unlikely that curators will go back and re-annotate
papers that have already been curated. However, these more specific terms will
gradually be included in the GO data sets through the continued annotation of
the scientific literature.

8.5.3 The volume of literature

The huge volume of literature associated with well-characterized proteins in par-
ticular organisms (especially seen for mammalian genes and proteins) can mean
that often it is impossible to annotate every single paper associated with each
protein. Curators attempt to cover as many different papers as possible; how-
ever it is always possible that a publication showing evidence to support a novel
annotation has been missed. Thus GO users should bear in mind that whilst
the annotations manually associated with each protein are correct, they do not
necessarily represent all that is known about the protein.

8.5.4 Missing published data

The annotations a curator is able to make are dependent on the information con-
tained in the literature. Authors occasionally miss out information such as species
origin of the proteins and cDNAs they describe, and without this information, the
paper cannot be annotated. For example, Meissner et al. described the calmodulin
binding function of the ryanodine receptors (Meissner et al., 2009). However, the
publication does not state the species of the calmodulin they use in their exper-
iments, in all likelihood because this is not important to the outcome of the
experiments. In this case, the curator contacted the authors, who responded very
promptly, thus enabling the paper to be annotated accurately. Due to time limita-
tions and the huge volume of literature associated with many proteins, a curator
will often skip papers that do not provide sufficient data to enable full annota-
tion, and instead focus on papers that have comprehensive protein descriptions.
Unfortunately, descriptions which clarify the identity and source of a specific
protein are often missing from papers published in high-impact journals, such as
Nature and Science, due to their strict word limits. Consequently, many of the
key publications describing the properties of a protein remain un-annotated.

8.5.5 Manual curation is expensive

Manual curation is an expensive undertaking, but unfortunately funding for
manual curation activities is not easily secured. Therefore, annotation targets are
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often prioritized to ensure that the curation project covers the specific aims of the
funding body (Lovering et al., 2008a). This means that even well-characterized
proteins may not have made it into an annotation priority list, and so there can
be a large difference between the annotation sets available for two well-studied
proteins.

Thus, research community participation, through the community annotation
approaches outlined in Section 8.4, by authors including as much detail as pos-
sible in their publications and by direct contact with curators, is an important
component of accurate and complete curation.

8.6 Accessing GO annotations

Given the number of GO annotations (at the time of writing – March 2010 –
there are over 58 million annotations to over 223 000 taxonomic groups in the
GOA-UniProtKB database), it is vital that users are able to easily extract useful
information from this data. Each GOC member provides file(s) of annotation
data called Gene Association Files (GAFs), which are tab-delimited files con-
taining a complete set of annotations released by an annotation group. These
files are available from the GOC website (www.geneontology.org/GO.current.
annotations.shtml), the GOC ftp site (www.geneontology.org/GO.downloads.ftp.
cvs.shtml), and often additionally from individual GOC members’ websites. How-
ever, in order to extract useful information from these files, a certain degree of
computational knowledge is required. Many users simply do not possess or have
access to this type of expertise; it is for this reason that a number of resources
have been developed to assist users with their data analysis.

Disparate groups around the world have created resources for analyzing GO;
they are all subtly different and they all have their own strengths and weaknesses.
Just choosing a tool can be a daunting task for most people, and this is reflected
in some of the enquiries that are received by the GO helpdesk. Unfortunately, the
GOC is unable to test each and every resource available to determine whether it
provides good quality results and is reliable. The user must take it upon them-
selves to investigate the relevant tools to decide which would work best for them
and in doing this it is important to be aware of certain key questions which
should be asked when evaluating a tool, including:

• Is the tool actively maintained? This will not only impact on whether the
user would receive any support if they encounter problems, but can also
affect the results that could be obtained. Tools using out-of-date information
can give vastly different results to a tool which is updated regularly with
the latest GO terms and annotations, both of which are constantly being
created, deleted or refined.

• Does the tool exploit the hierarchical structure of the GO? This will allow
users to create an overview of the functional attributes of their list of
proteins by ‘mapping-up’ annotations to less-specific (parent) GO terms.
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• What statistical model does the tool use and are there other options to
choose from? Different statistical models can produce widely differing
results.

Other questions to be considered are outlined in Table 8.4 (reproduced from
Dimmer et al. (2008)). GO tools can be divided into two broad categories: those
for searching and browsing GO and/or its associated annotations, and those for
categorizing a list of genes or proteins from microarray or proteomic analyses.

8.6.1 Tools for browsing the GO

GO browsers are designed for searching and browsing terms in the three ontolo-
gies. Some browsers additionally provide access to GO annotations. A number
of different browsers are briefly described below.

8.6.1.1 The Ontology Lookup Service

The Ontology Lookup Service (OLS; www.ebi.ac.uk/ontology-lookup/; Cote et
al., 2006) is a Web interface for searching Open Biomedical Ontology (OBO)
format ontologies, including GO. It does not include GO annotations, but individ-
ual GO terms can be searched or the entire GO hierarchy can be browsed. When
a term is selected, the information attached to that term is displayed, including
definition and synonyms. A graph is displayed showing either the path of the term
up to the root node, including the relationships between these terms, or there is
an option to view a graph of the selected term’s child terms. The OLS also pro-
vides an extensive range of Web services for automatically querying ontology
structure, through both REST and SOAP interfaces.

8.6.1.2 OBO-Edit

As well as being an ontology editing tool, the GOC-developed OBO-Edit
(http://oboedit.org) can also be used as an OBO browser. OBO-Edit is a
graph-based tool into which a user can load an OBO ontology of their choice,
including GO, and then view or edit it. As the user loads the ontologies, the
ontology files used can be either the most up-to-date or an older, archived
version. OBO-Edit is the tool used by the GOC editorial team to develop and
maintain GO (Day-Richter et al., 2007).

8.6.1.3 Specialized browsers

There are also many browsers which combine viewing of protein annotation with
browsing of GO. Some of these only supply a subset of GO annotations, for
instance to a particular species, such as the MGI GO browser (www.informatics.
jax.org/searches/GO_form.shtml; Bult et al., 2008), which supplies annotations
to mouse proteins, or the TAIR browser (www.arabidopsis.org/servlets/Search?
action=new_search&type=keyword; Swarbreck et al., 2008), which provides
annotations to Arabidopsis proteins.
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Table 8.4 Questions to consider when choosing a GO analysis tool.

Key questions Reasons

Does the tool enable the
hierarchical structure of
GO to be exploited?

GO analysis tools should be designed to
improve the identification of functional
groups within a data set by allowing the
user to manually consolidate genes
associated with highly specific (child) GO
terms to those with the higher (parent) GO
terms in order to formulate and test
specific biological hypotheses.

What is the release date of
the data used by the tool?

Each month an average of 240 GO terms is
added to the Gene Ontology and 1500 GO
annotations are added to the human GO
data set. Tools that infrequently download
GO data will restrict analyses. Remember
to include the release date(s) of the GO
annotation data set and ontology file used
by the tool in any resulting publications.
The tool should provide this information.

Does the tool correctly treat
the GO annotations with
the qualifier ‘NOT’?

This qualifier reverses the meaning of an
annotation, so these annotations should be
either removed from the analysis or used
to calculate the amount of evidence against
certain hypotheses involving the terms
annotated with NOT.

Does the analysis tool
enable concomitant
functional profiling for all
three GO categories?

In addition, an increasing number of tools
also display other annotation data such as
TRANSFAC regulatory motifs, BioCarta,
KEGG and Reactome pathways.

Is the type of identifier used
in the assay directly
accepted by the tool (e.g.,
probe IDs, RefSeq protein
IDs) or will it be
necessary to map one
identifier type to another?

You may need to convert the identifiers of
your gene list into those accepted by the
tool. This can be an important source of
errors since up to 20% of the identifiers
can be routinely lost or incorrectly mapped
during identifier translations (Draghici et
al., 2006). Even if the type of identifier is
directly accepted, is this the native
identifier used in the analysis or is an
internal identifier mapping being
performed? If internal identifier mappings
are being carried out, what are the sources
of data and their release dates?

(continued overleaf)
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Table 8.4 (continued).

Key questions Reasons

Does the tool test for both
enrichment AND
depletion of the GO
terms?

Some tools only test for
over-representation of the differentially
expressed genes within the given GO
term. However, both significantly
enriched as well as depleted GO terms
can be biologically meaningful.

Does the tool enable the
user to submit their own
GO annotation data set or
select specific evidence
code-supported
annotations for the
analysis?

The facility to submit a data set enables
the users to apply the most recent GO
annotation data sets to their analysis.
However, there are only a few species
where filtering out certain evidence
code-supported annotations is
appropriate.

What is the statistical model
used and are there several
alternative models that
the user may choose
from?

One serious and widely neglected problem
in GO profiling is that the same data
submitted to different tools can provide
widely differing results for the same
GO terms. Having the ability to specify
the model allows the user to eliminate
one variable to verify their analysis.

What choice of correction
factors is available?

To compensate for the propagation of gene
associations from each GO term to all
their parent GO terms, many tools give
a choice of correction factors, such as
Bonferroni, Holmes, false discovery rate
(FDR) and Šidák (Rhee et al., 2008).
Bonferroni or Šidák are suitable when
less than 50 unrelated GO categories are
involved, Holmes is more appropriate
for larger numbers of unrelated GO
categories, and FDR is a good choice if
several GO categories are related, for
example contain several GO terms with
a common parent.

Based on table 2 from Dimmer, E.C. et al: The Gene Ontology – Providing a functional
role in proteomic studies. Proteomics . Published online 17 Jul 2008. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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Others are even more specialized; the Comparative Toxicogenomics Database
(CTD; http://ctd.mdibl.org/; Mattingly et al., 2006) integrates a GO browser to
enable users to search for functional information about proteins that are the
targets of chemical exposure, thereby providing a resource for environmental
health research.

8.6.1.4 AmiGO and QuickGO

Two browsers that provide a broader set of annotations are: AmiGO (http://amigo.
geneontology.org/cgi-bin/amigo/go.cgi; Carbon et al., 2009), the official GOC
browser, and QuickGO (www.ebi.ac.uk/QuickGO/; Barrell et al., 2009), devel-
oped by the GOA group at the EBI. These two are similar, in that GO can be
searched and browsed; GO terms and their relationships can be viewed in context
with GO hierarchy, either in chart or graphical views; annotations are provided
to a large number of species; and annotations can be mapped-up to more general
GO terms using a GO slim facility in each of the tools. They are both Web-
based browsers and so are straightforward for novice users to start using; they
also use the most current ontology and annotation data and are actively main-
tained. A comparison of the different displays of the GO term hierarchy and GO
annotations between AmiGO and QuickGO can be seen in Figure 8.4.

However, AmiGO and QuickGO differ in a number of aspects. AmiGO
incorporates a number of analysis tools including a Term Enrichment feature
that finds significant terms, which are shared between a group of proteins, and
a BLAST feature which allows a user to enter a sequence and be provided
with a list of closely related sequences in the GO database with their associ-
ated annotations. AmiGO currently only displays manual GO annotations for the
majority of proteins, whereas QuickGO displays both manually and electronically
assigned annotations; at the time of writing (March 2010), the GOA database con-
tains more than 57 million electronic annotations. QuickGO additionally features
extensive filtering capabilities allowing users to create a customized annotation
set. QuickGO also incorporates a facility to find terms which are commonly co-
annotated with a chosen GO term; this is useful not only for curators to ensure
they have made consistent annotations, but also for users who can discover,
for example, which Molecular Functions are involved in which Biological Pro-
cesses , or in which Cellular Component a particular Biological Process occurs
(Figure 8.5). For example, the Biological Process term ‘cholesterol transport’
is co-annotated with related Biological Processes cholesterol homeostasis and
lipoprotein catabolic process; Molecular Functions high-density lipoprotein bind-
ing and cholesterol transporter activity; and the Cellular Components caveola and
high-density lipoprotein particle. Finally, QuickGO also provides a REST style
query interface for programmatic retrieval of GO term information and annota-
tion data. These Web services are fully integrated so that the filtering options
and data sets available are fully synchronized between the browsable and Web
service interfaces. Results are visible in tab-separated, OBO or XML formats.
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(a)

(b)

Figure 8.4 A comparison of AmiGO and QuickGO views of the GO term ‘choles-
terol transport’ (GO:0030301). (a) Graphical or ancestry views; GO browsers
generally contain the same ontology information but display this in different ways.
These views show the graphical or ancestry views, which allow users to easily
see the parentage for each term. The AmiGO view shows the root term at the
bottom, whereas the QuickGO shows the root term at the top. (b) Annotation
views; GO browsers often contain different subsets of GO annotations according
to their focus. AmiGO (front insert) does not currently contain electronic (IEA)
annotations, whereas QuickGO does include this data set.
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Figure 8.5 Co-occurring terms view in QuickGO. A novel feature of QuickGO
is its ability to calculate which GO terms are commonly co-annotated with a
selected term. After clicking on the ‘Co-occurring Terms’ tab in a GO term page,
a user can choose which evidence codes used to make annotations should be
included in the calculation for co-occurring terms. In this example, the resulting
table displays a ranked list of the most common terms which have been anno-
tated alongside the GO term ‘cholesterol transport’ (GO:0030301) using only
manual evidence codes (i.e., not IEA evidenced annotations), the most commonly
co-annotated terms appearing at the top of the table.

8.6.2 Functional classification

In addition to tools used for viewing GO and its associated annotations, there
are many resources available to perform analyses and functionally categorize
proteins using GO.

There are tools for characterization of unknown sequences, such as Blast2GO
(Conesa and Götz, 2008; www.blast2go.org/) and AmiGO Blast (http://amigo.
geneontology.org/cgi-bin/amigo/blast.cgi), which take nucleotide or protein
sequences and perform a BLAST search against the GO database for similar
sequences that have been annotated using GO, thereby allowing a user to infer
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GO attributes for their unknown sequence. In a similar vein, the InterProScan tool
(www.ebi.ac.uk/Tools/InterProScan/; Hunter et al., 2009) allows users to input a
protein sequence to retrieve protein domains which are present in the sequence
and any associated GO terms that the domains may have been mapped to, again
allowing inferences about the functionality of an unknown protein sequence.

The most popular type of GO analysis tool is that which groups genes
and/or proteins according to their shared annotation to GO terms. There are
many of these in the public domain, each with slightly different capabili-
ties, so it can be quite difficult to determine which tool best fits a user’s
requirement. A comprehensive survey of bioinformatics enrichment tools has
been written by Huang da et al., who have classified 68 enrichment tools
into three groups; Singular Enrichment Analysis (SEA), Gene Set Enrichment
Analysis (GSEA) and Modular Enrichment Analysis (MEA), depending on
whether or not the input gene lists have been preordered (SEA vs. GSEA)
or whether or not the tool considers GO term relationships in its calculations
(MEA) (Huang da et al., 2009a). The tools are classified according to the
enrichment algorithms the tool uses, and the features and limitations of each
class of tool are also provided. Alternatively, a useful resource to help the
user to decide which analysis tool best fits their requirements is SerbGO
(http://estbioinfo.stat.ub.es/apli/serbgov131/index.php; Mosquera and Sanchez-
Pla, 2008). This Web-based tool compares the functionality of 36 tools and
allows users to select the criteria required from the tool, including parameters
such as: Web-based or locally downloadable, type of identifier, and frequency of
data updates. (See Table 8.4 for questions to consider when selecting a GO tool.)

Many GO analysis tools are similar in that they accept an input of a list of
gene or protein identifiers from a specified organism and compare the enrichment
of GO terms in this list with a background set. Any terms that are more frequently
present in the study set compared with the background set are given a p-value
to describe how significant the enrichment is. Some tools will use the rest of
the genome as a background set, whereas others allow the user to upload their
own background set. Additionally, these tools often provide several options for
the statistical method to be used in the analysis. The other difference between
tools is the output view of results; most display the results as a table of GO
terms with their associated significance, and may list the genes identified in each
group; some also provide graph views of the significant GO terms.

Some analysis tools are available directly on the Web, for instance FatiGO
(Al-Shahrour et al., 2008), FatiScan (Al-Shahrour et al., 2007), DAVID (Huang
da et al., 2009b), Onto-Express (Draghici et al., 2003), while others can
only be accessed by downloading the program to your own computer and
so require a little more computer knowledge, such as BiNGO (www.psb
.ugent.be/cbd/papers/BiNGO/; Maere et al., 2005) and the Ontologizer (Bauer
et al., 2008).

A word of caution: during the preparation of this chapter it was noted that
many of the GO browsers and GO analysis tools available online have not been
actively maintained and, because of this, they are unlikely to have the most
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recent GO data and GO annotations that are available. This could seriously
impact any results obtained from these tools; so, before using a tool, it is worth
investigating whether it provides the most up-to-date GO data. We will now give
brief descriptions of some of the GO analysis tools available, which we have
some experience with and which are regularly updated.

8.6.2.1 FatiGO

FatiGO (http://babelomics.bioinfo.cipf.es/EntryPoint?loadForm=fatigo; Al-
Shahrour et al., 2008) is a functional enrichment tool, belonging to the SEA
class of bioinformatic tools, which compares a list of genes (such as a list
of differentially expressed genes or proteins), with a background list of genes
(e.g., the rest of the genes on the microarray or the rest of the genome) using
a Fisher’s exact test with the option to analyze the lists using a variety of
knowledge bases including GO, KEGG pathways, and UniProtKB Keywords. Its
sister application, FatiScan (http://bioinfo.cipf.es/babelomicswiki/tool:fatiscan),
belongs to the GSEA class of bioinformatics tools, and as such it categorizes
ordered lists of genes which have been ranked by any experimental or theoretical
criteria (e.g., differential expression in disease versus healthy samples) and aims
to find groups of genes which share functional properties. FatiScan can find
significantly over- or under-represented functional classes whereas many other
tools only find over-represented functions.

8.6.2.2 DAVID

DAVID (http://david.abcc.ncifcrf.gov/home.jsp; Huang da et al., 2009b) belongs
to the SEA and MEA classes of tools, meaning that it takes a list of unordered
genes as input and it takes the relationships of GO terms into account. It uses a
modified Fisher’s exact test called an EASE score to measure enrichment of GO
terms.

8.6.2.3 Onto-Express

Onto-Express (Draghici et al., 2003) is part of a suite of tools (Onto-Tools,
http://vortex.cs.wayne.edu/projects.htm) that categorizes lists of differentially
expressed genes from microarray experiments. Onto-Express catalogs more
than 300 microarrays for use as a reference or background set, or the user can
upload their own. The user can also specify the statistical method to be used
for the analysis. As is the case for DAVID, Onto-Express also belongs to the
SEA/MEA classes of tools.

8.6.2.4 The Ontologizer

The Ontologizer (http://compbio.charite.de/index.php/ontologizer2.html; Bauer
et al., 2008) is unique in that the user is able to upload an ontology file and an
annotation file; this is incredibly useful as it enables the user to use the most
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up-to-date ontology and annotations available – the drawback of most other
tools is that the user is reliant on the tool providers loading the most recent data
files. This flexibility means that the user can determine how the analysis for
their set of genes has varied over time by analyzing them with an older version
of the ontology and annotation files. The Ontologizer is in the GSEA class of
GO tools, allowing the user to provide a ranked list of genes for analysis. The
analysis can be performed either ‘term-for-term’ or ‘parent-child’ where it takes
into account the relationships between GO terms.

8.6.3 GO slims

A useful way of using GO to summarize results from large-scale data sets that
has become popular is the GO slim. A GO slim is a subset of high-level GO
terms from the ontology that have been specifically chosen to give an overview of
general biological features or even just a particular area of biology. Annotations
to these terms or their child terms are ‘mapped-up’ to the slim terms by using
the true path rule of the ontology. This rule states that if a protein is annotated
to a particular term, it must also be true that the protein could also be annotated
to the parent terms. For example, a protein annotated to the GO term ‘lamin
depolymerization’ (GO:0007078) could also, theoretically, be annotated to the
parent term ‘cell cycle’ (GO:0007049). By applying this ‘slimming’ procedure
to a large set of proteins, a researcher could get a broad overview of the functions
or processes that the genes or proteins are involved in, without the detail of the
more specific GO terms. Many users prefer to make their own GO slim so that
they can tailor it to their particular area of research.

Some things to keep in mind when making a GO slim are:

• The terms must be general, high-level terms representing major cellular
processes, functions or sub-cellular compartments (depending on what part
of the ontology is of interest).

• If constructing a slim to encompass all major biological processes, the
terms must provide a good overview of the biology of the organism.

• The slim should contain terms to which a reasonable number of proteins
have been annotated; it is pointless to have a GO term in a slim that is
only applied by a few proteins.

• Be careful not to choose a term which is so high-level that it represents
many biologically different processes. It may be better to choose two terms,
or more granular terms.

• Ideally, when your set of proteins have been mapped-up to your GO slim,
all proteins should be represented somewhere in the slim.

For example, a recent study utilized a GO slim to characterize the plant,
Thellungiella halophila . Taji et al. exposed the halophyte to various environ-
mental stresses, such as high salinity, freezing, and abscisic acid treatment,
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and then classified them using the plant GO slim available from the GOC
website (www.geneontology.org/GO.slims.shtml). Compared to Arabidopsis,
Thellungiella had a similar characterization of proteins except that the latter
species has 1.5 times as many proteins involved in transport. This result,
together with conclusions from other studies, showed that Thellungiella has
more efficient sodium and potassium homeostasis and prompted the authors to
suggest that this species has a unique ion transportation system (Taji et al., 2008).

8.6.4 GO displays in other databases

GO annotations are displayed in a number of different databases, in combination
with manually and/or electronically curated data from other curation efforts.
For example, the Entrez Gene database (www.ncbi.nlm.nih.gov/sites/entrez?db
=gene) displays GO data for each gene alongside protein interaction data from
the Human Protein Reference Database (HPRD; www.hprd.org/), BioGRID
(www.thebiogrid.org/index.php), the Biomolecular Interaction Network Database
(BIND; www.bind.ca/), pathway data from Reactome (www.reactome.org/), and
the Kyoto Encyclopedia of Genes and Genomes (KEGG; www.genome.jp/kegg/).

Not all databases display GO in the same manner. For example, Entrez
Gene displays all unique GO terms regardless of evidence code, thus for a GO
term that has both manual and electronic evidence, Entrez Gene might show
the IEA code, rather than the IDA evidence. This is an accurate display; how-
ever, if there is some manually annotated evidence for a particular GO term,
the user will not necessarily find it from looking at Entrez Gene. In addi-
tion, due to stringent production schedules, many databases are only able to
update their GO cross-references on an infrequent basis and this can result in a
disparity of GO annotation displays from different resources. As with all infor-
mation resources, it is best to use data obtained from the primary sources. In
the case of GO annotations and terms, the primary source is the GOC website
(www.geneontology.org/index.shtml).

8.7 Conclusions

• There are two types of biocuration: data submission and value-added. GO
is an example of a value-added curation effort.

• GO is a controlled vocabulary structured as a directed acyclic graph.

• Many biocuration groups use GO, and many of these are focused on a
single genus or species.

• GO currently utilizes 18 evidence codes to describe experimental evidence,
non-experimental evidence, and computational evidence.

• New terms are created, existing terms revised, and the ontology refined as
an ongoing process to improve GO.
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• Manual curation generates granular annotations, whereas electronic anno-
tations tend to be less specific.

• Annotations are transferred from well-annotated proteomes to less well-
studied proteomes by homologous and phylogenetic methods.

• Community participation is an important aspect of accurate biocuration,
but on the whole biocurators have as yet been unable to reliably involve
lab-based scientists in curation activities.

• GO does not currently capture all relevant biological aspects, but may soon
include data from other biomedical ontologies, so as to provide greater
detail for its users.

• GO annotations can be accessed from several GO browsers, and are also
displayed in a number of gene or protein databases.

• There are numerous third-party tools that have been developed to assist
in the GO analysis of large data sets. However, users must check whether
these use the latest ontology and annotation files.

In the authors’ experience, researchers are often unaware of the manual effort that
goes on behind the scenes of their favorite database, imagining the majority of the
work to be electronic. Thus the benefits of biocuration need to be expounded to
the life science research community. However, the availability of GO and other
functional annotation efforts has had a profound effect on the way in which
life science research is carried out today. There are now numerous websites
available where a researcher can input a novel sequence and quickly establish
a fairly accurate idea of its function, thanks to the ongoing curation of multiple
species, by many different biocuration groups. Thus the products of biocuration
activities (annotations displayed in user-friendly databases) are now an essential
part of the lab-based researcher’s tool set.
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9

Methods for improving
genome annotation

Jonathan Mudge and Jennifer Harrow

9.1 The basis of gene annotation

9.1.1 Introduction to gene annotation

The ultimate value of a genome sequence depends entirely on the quality of
the accompanying annotation. The term ‘genome annotation’ refers to the iden-
tification and description of any element on the genome to which a biological
functionality can be attached. Most importantly this annotation is required to
describe the gene content of a particular organism’s genome, and in this chapter
we will focus mainly on the identification of functional transcribed gene struc-
tures. However, it should be noted that a total understanding of a genome
sequence would also require the identification of a wide range of other functional
elements, for example gene promoters and splicing signals.

How do you annotate the gene content of a genome? There are many anno-
tation or ‘gene finding’ processes that can be used, as summarized in Figure 9.1,
and the choice of strategy is very much dependent on the data available. A sci-
entist provided with no other resources than a single genome sequence would
face a difficult task in describing its gene content. In this scenario, the scientist
would have no option but to construct gene structures ab initio, using knowl-
edge or assumptions regarding the gene architecture of the organism to design a
gene finding pipeline. While such single-genome ab initio approaches have their
limitations when used in isolation, they have proved highly useful and indeed
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Figure 9.1 A variety of strategies for gene finding. Information on the loca-
tion of genes can be obtained from four main sources: (1) a conservation-based
analysis using other genomes; (2) the identification of sequence sites and motifs
that indicate the presence of a gene structure; (3) the intrinsic statistical proper-
ties of coding sequences; (4) known transcript and protein sequences. Frequently
these sources are used in combination. Whilst basic ab initio gene finders con-
sider only information contained within the target genome sequence (6), more
sophisticated programs have been designed to use information from other genomes
(5) and/or transcriptional evidence (7). The use of cDNAs, ESTs and proteins is
preferable where available, and annotation pipelines such as Ensembl often begin
with the mapping of such sequences to the genome, with the refined construction
of exon/intron boundaries provided by the use of ‘splice alignment algorithms’
(8). Incomplete gene models constructed in this way can be improved by com-
bining data from ab initio or comparative gene finders (9), and programs are
available which combine the outputs of many gene finders into a single coherent
gene set (10). Ultimately, manual genome annotation is the most accurate and
comprehensive gene building process available (11), and gene models which lack
strong support can be subjected to experimental confirmation.

necessary in combination with other methods. Access to transcriptional data from
the organism of interest greatly enhances the gene annotation process, since these
sequences direct us to regions of the genome undergoing transcription and allow
us to accurately identify the exonic structures of the underlying genes. Such
‘evidence-based’ gene construction methodologies either depend entirely on the
speed and consistency of computer algorithms (automated annotation), or else
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integrate a degree of manual assessment, for example, to improve the description
of nonstandard gene elements (manual annotation). Finally, if the scientist could
compare their organism’s genome to others which had already been annotated,
the task would be easier still, since evolutionary conservation provides a pow-
erful tool for the identification of gene structures (comparative annotation, or
‘phylogenomics’). Currently, the most successful gene building processes com-
bine all these different approaches to produce a reliable gene set. As we shall
discuss, flexibility is critical to such processes in order that the gene set can be
updated as appropriate when new information becomes available.

9.1.2 Progression in ab initio gene prediction

A number of computer algorithms are available to perform single-genome ab ini-
tio gene prediction. The most popular of these is GENSCAN (Burge and Karlin,
1997), due to its high exon specificity (81%) and sensitivity (78%) in compari-
son to other related algorithms (Burset and Guigo, 1996). Each gene prediction
algorithm shares the same essential functionality: it searches for sequence within
the genome that implies the presence of gene structures, typically branch site
motifs and splice sites, open reading frames (ORFs), codon usage statistics, and
transcription signals (see Figure 9.1); an organism-specific training set is usually
used to calibrate the underlying heuristics. In the context of the human genome
project, single-genome ab initio gene prediction algorithms were a valuable aid
to genome annotation in the early stages of data production (Hattori et al., 2000;
Dunham et al., 1999). Today, however, their usefulness is limited compared
with the superior transcription-based approaches described below; many ab ini-
tio algorithms have in fact been further developed to combine transcriptional
or comparative data. Such models include NSCAN, which supplements ab ini-
tio functionality with information derived from multispecies genome alignments
(van Baren et al., 2007), and AUGUSTUS, which can be adapted to use a vari-
ety of external information including alignments, ESTs, and protein sequences
(Stanke et al., 2006).

9.1.3 Annotation based on transcribed evidence

Evidence for the transcription of certain genomic regions takes the form of
expressed sequence tags (ESTs), cDNAs, and protein sequences submitted to
the public databases such as EMBL/GenBank/DDBJ and Uniprot (Benson et al.,
2009; Kulikova et al., 2007; Sugawara et al., 2008; UniProt Consortium, 2009).
Typical ‘evidence-based’ gene building methodologies involve two stages: the
alignment of the total transcriptomics data available for that species against the
genome sequence, followed by the generation of gene models based on these
alignments either by automated or manual approaches (see Figure 9.1). In the
case of the human genome, extensive transcriptomics data is available, making
evidence-based gene prediction a powerful tool. Several large-scale projects are
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currently funded to describe the human gene set using transcriptional evidence
as a basis, and as a result there are a number of different gene ‘builds’ available
to researchers.

The Ensembl genebuild process, generated in collaboration between the Well-
come Trust Sanger Institute (WTSI) and the European Bioinformatics Institute
(EBI), begins with the alignment of all available protein data for that species
against the genome sequence (the ‘targeted stage’), which is forced into a pre-
dicted gene structure using the Genewise algorithm; this is therefore automated
annotation (Hubbard et al., 2009). At this stage, proteins from closely related
species are also aligned and used to build structures in regions not covered by
same-species evidence; the pipeline is thus a combination of transcriptional and
comparative annotation processes. Following this, cDNA evidence is aligned
to provide further refinement, before transcript models are merged to elimi-
nate redundancy. The resulting Ensembl gene – including a list of its supporting
evidence – can be viewed in the Ensembl gene web browser (www.ensembl.org).
Typically, a global genebuild takes four months to complete. This is not the end
of the process; the Ensembl build is updated regularly in order to accommo-
date changes to the genome sequence, increased coverage of the transcriptome,
and underlying improvements to the annotation pipeline. Note that the method-
ology described is only suitable for good-quality, high-coverage genomes; the
annotation of low-coverage genomes will be discussed in Section 9.2.1.

At this stage, the Ensembl genebuilds provided for human and mouse are com-
bined with a gene set accessible via the Vertebrate Genome Annotation (Vega)
database (Wilming et al., 2008; http://vega.sanger.ac.uk), a central repository for
the manual annotation of vertebrate sequences. This annotation, generated by the
HAVANA team at the WTSI, is described as manual since each gene model is
manually reviewed. In short, this involves the confirmation and recording of the
genomic coordinates of the start and stop codons of each gene, as well as every
splice site. Transcriptional evidence remains central to this process, and since
objects can be constructed based on ESTs alone, the Vega gene set includes a
large number of objects representing alternative spliceforms. Furthermore, anno-
tators also classify transcripts as retained introns where the RNA has not finished
the splicing process, and as artifacts where a cDNA appears to represent poor
quality sequence. Finally, the annotator is also free to consider information of any
kind available in constructing a model. This may include the results of ab initio
programs as well as automated gene-building methodologies such as Ensembl.
Further support often comes from published literature relevant to a particular
gene, and the identification of genomic motifs in the form of CpG islands, and
polyadenylation (polyA) signals and sites.

In comparison to the Ensembl genebuilds, the manual annotation gene sets for
the human and mouse genomes in Vega are not yet complete. In order to provide
the best current representation for these genomes, HAVANA genes from the Vega
database are now merged with the Ensembl genebuild. In human, the resulting
genebuild is referred to as the GENCODE data set. GENCODE represents an
effort to identify and map all protein coding genes within the boundaries of
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the ENCODE (Encyclopedia of DNA Elements) project, which itself seeks to
understand all functional elements in the human genome. The initial pilot phase
of the ENCODE project used 1% of the genome as a testing ground to compare
different strategies of element discovery, and these regions were subjected to
HAVANA annotation (Harrow et al., 2006). The predicted gene models were
then subjected to experimental validation: RACE data supported the 5′ extension
of 30 loci and the addition of novel splice variants to 50 loci, whereas RT-PCR
confirmed 47 out of 161 transcripts which had not been classed as ‘known’ based
on correspondence to curated UniProt proteins. Finally, RT-PCR was also used
to check ab initio models that were not supported by HAVANA annotation, that
is, lacked transcriptional support; only 1.2% of splice junctions were confirmed,
adding confidence in the completeness of the GENCODE gene set.

The NCBI (National Center for Biotechnology Information) is also combin-
ing manual and automated annotation in the construction of its RefSeq collection,
although the methodology used is different to that used by Ensembl/HAVANA
(Pruitt et al., 2005). Ultimately, RefSeq aims to complete a non-redundant data
set of all naturally occurring nucleotide and protein molecules for the organ-
isms of major scientific interest. Rather than using the genomic sequence as
a starting point, however, the core RefSeq process focuses on extracting tran-
scripts from GenBank and linking them to the correct protein translations, which
are then in turn linked to the chromosome (and to a wide variety of other
genome resources). This alignment stage focuses on the use of full-length cDNAs;
unlike for HAVANA annotation, ESTs are not commonly used. In the case of
human and mouse, the RefSeq collection contains both models that were con-
structed computationally before being subjected to manual curation (prefixed as
NMs), and models that remain as computational predictions (XMs), constructed
using the Gnomon gene prediction tool (www.ncbi.nlm.nih.gov/genome/guide/
gnomon.shtml). Again, external data such as publications or expert opinions may
be consulted during manual curation. Finally, the RefSeq data set is also cen-
tral to the fully automated human genebuild constructed by the University of
California, Santa Cruz (UCSC), since RefSeq models are represented as UCSC
genes where successfully aligned to the genome (Hsu et al., 2006). UCSC genes
are also constructed based on GenBank RNAs where at least one further piece
of supporting evidence is found, typically CCDS (consensus coding sequence)
models or human or mouse ESTs. This genebuild, as well as the alignments of
other data sources such as transcriptional evidence, can be visualized using the
UCSC genome browser (http://genome.ucsc.edu).

9.1.4 A comparison of annotation processes

The ideal annotation pipeline would have two key characteristics: speed and
accuracy. Automated annotation processes such as Ensembl are significantly
faster than the manual approaches used by HAVANA and RefSeq; the less
sophisticated ab initio programs are faster still. On the other hand, a fully
manual approach is the most accurate in describing a particular locus since an
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annotator has the flexibility to integrate and filter information available on that
locus from a wide variety of sources. However, the major drawback to manual
annotation is that the process is slow and labor intensive, and thus expensive.
Today, the number of genome sequences that require annotation is increasing
rapidly; in 2006 there were over 800 eukaryotic genome projects underway,
many of which have limited funding and a small research community (Liolios
et al., 2006). Automatic annotation is absolutely necessary in such cases, and
this process will typically take a comparative approach whereby gene models
are constructed based on the genomic alignment of existing models from related
species; this is discussed further in Section 9.2.1.

How close, then, can automated annotation processes get to the accuracy
standards of the manual efforts? The accuracy of a variety of automated
gene prediction methodologies was judged in 2005 as part of the ENCODE
genome annotation project (EGASP), via a comparison with HAVANA manual
annotation (Guigo et al., 2006; Guigo and Reese, 2005). This study included
single-genome ab initio algorithms, programs using transcriptional evidence
or multiple genomes, as well as more complex annotation pipelines such as
Ensembl. Overall, automated annotation was seen to be quite effective at
identifying genes, with the best methods predicting over 70% of the loci that
had been identified manually. For all processes considered, however, the actual
description of the underlying transcript structures was less accurate than for
manual annotation, achieving 40–50% accuracy. In particular, it became clear
that automated annotation is weaker in the description of alternative splicing, a
process which affects the majority of mammalian genes (see also Section 9.2.3).
Overall, methodologies utilizing transcriptional data were seen to be superior in
general to those based on only genome comparisons, which were in turn more
successful than the single-genome ab initio algorithms.

In the future, single-genome based ab initio gene prediction is likely to be the
first choice option only for genomes which are both (1) significantly diverged from
other well-studied genome sequences (thus ruling out a comparative approach), and
(2) lacking in accompanying transcription data. Such genomes, however, do exist;
amongst prokaryotes in particular. Furthermore, GENSCAN and GENEID played
a vital role in the recent initial annotation of the fish Tetraodon nigroviridis (Jaillon
et al., 2004). Finally, a large proportion of genome projects currently underway will
generate draft sequence of low coverage (as low as 2×; see Section 9.2.1). Prior to
a full Ensembl genebuild, the assembly of a new low-coverage genome is released
with a GENSCAN prediction set in the PreEnsembl site (Hubbard et al., 2009).
In contrast, reference genomes such as human and mouse that have high-quality
finished sequence will be subjected to the most sophisticated gene build annotation
processes available, with the focus placed on achieving a ‘reference’ gene set.

9.1.5 The CCDS project

Having dissected the differences between these reference annotation strategies,
it should be noted that the Ensembl/HAVANA, RefSeq, and UCSC groups are in
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fact collaborating to produce a unified coding gene annotation set available via the
major genome browsers. This initiative, the consensus CDS (CCDS) project, aims
to provide a single set of gene translations for the human and mouse genomes
for which agreement has been reached regarding the placement of the ATG and
termination codons (Pruitt et al., 2009). It began with the alignment of all human
and mouse RefSeq models to the respective genome, followed by an ongoing
comparison of these models with the equivalent Ensembl/HAVANA genes. Where
agreement is found, the coding transcript is promoted to the CCDS database.
Where there is a discrepancy, a discussion is entered into, and a consensus
reached as to the best way to represent the locus.

The nature of the disagreements typically identified provides further insights
into the different nature of these annotation processes. In many cases the under-
lying issue relates to the transcriptional evidence; for example, the lack of a
full-length transcript may leave a gene structure truncated. Many such loci remain
in both the human and mouse genomes. Further problems can be encountered
when annotating the ATG codon of the CDS (coding sequence); again, this
often results from an interpretation of incomplete transcriptional evidence. For
example, where the gene model has been constructed based on a single cDNA,
it is often possible to extend the object further at the 5′ end using ESTs. In
turn, this can lead to the introduction of a potential ATG codon upstream of that
which was previously suspected to mark the 5′ end of the CDS. However, this
ATG codon is not selected simply on the basis that it demarcates the longest
CDS, since it is known that the most 5′ ATG is not always that actually used in
translation. An upstream ATG may gain favor if it has a strong Kozak consensus
sequence: a conformation of base pairs flanking the codon known to promote its
usage (Kozak, 1984). Evolutionary conservation, however, provides an argument
for change with more weight: if an upstream ATG in human, for example, is
also seen to be supported in other species, typically mouse, then this is taken as
strong evidence for the functionality of this codon.

9.1.6 Pseudogene annotation

Pseudogenes are sequence elements formed from protein coding genes, with
translational potential having been lost due to a combination of truncations,
frameshifts, and nonsense mutations. Their correct identification and classifica-
tion is essential in fully describing the genome of a species, since they are present
in high abundance; 22 600 are currently predicted to exist in the human genome,
suggesting that they outnumber protein coding genes (www.pseudogene.org). In
particular, a properly annotated pseudogene collection is critical in recapitulating
the evolutionary history of an organism, and also a valuable resource in popula-
tion genetics. Pseudogenes can be formed by three mechanisms, as summarized in
Figure 9.2: retrotransposition, duplication, and inactivation. In the first instance,
an mRNA sequence is transcribed from a particular gene, before being fully or
partially retrotransposed back into the genome sequence; the inserted sequence is
referred to as a ‘processed pseudogene.’ In the second instance a gene becomes
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Figure 9.2 Three mechanisms of pseudogene formation. (a) Processed pseudo-
genes are formed where an mRNA undergoes reverse transcription and integrates
into the genomic sequence; the site of integration is essentially random. Processed
pseudogenes lack promoter elements (black triangles) and may be truncated at one
or both ends (UTRs are shown in dark grey). They can be recognized due to their
lack of intronic sequences and common integration of the polyA tail. (b) Unpro-
cessed pseudogenes are formed by the full or partial duplication of a progenitor
gene, typically in tandem. If the new gene is intact on arrival it may either acquire
functionality as an additional copy, or else undergo pseudogenization by mutation
(shown as X). (c) Unitary pseudogenes result from the deactivation of an existing
gene by mutation; the locus is subsequently fixed in a population due to genetic
drift or natural selection.

duplicated, either partially or entirely, and the duplicated sequence either cannot
function or loses the ability to function due to mutation over the course of time;
this is an ‘unprocessed pseudogene.’ Finally, an existing non-duplicated gene
may undergo an inactivating mutation, forming a ‘unitary’ pseudogene.

The annotation of pseudogenes is not straightforward. Automated predic-
tion is most successfully performed when separated from the gene building
efforts described in Sections 9.1.2 and 9.1.3; Ensembl and the automated Ref-
Seq pipeline, for example, do not target pseudogenes (although they do high-
light possible pseudogenization events where gene objects contain frameshifts).
Furthermore, the majority of pseudogene pipelines are only designed to target
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one category of event, typically retrotransposition or duplication. For example,
Suyama et al. recently used an integrated homology and orthology analysis inde-
pendent of current gene annotation to identify 9484 and 9017 duplicated genes
in human and mouse respectively (Suyama et al., 2006). This data set was
further separated into active and inactive genes, thus identifying 1811 dupli-
cated pseudogenes in human and 1581 in mouse. These results, representing the
largest collection of non-processed pseudogenes available, can be accessed via the
pseudogene.org website; the major resource for both eukaryotic and prokaryotic
pseudogenes.

Manual annotation is also suited to pseudogene identification, since each gene
alignment is analyzed on a case-by-case basis; this also allows pseudogenes to be
categorized according to their method of formation. What are the relative merits
of automated and manual pseudogene identification methodologies? This question
was investigated by the GENCODE consortium. Their initial goal was to obtain
an accurate annotation of pseudogenes in the ENCODE pilot regions; 44 sections
of the human reference assembly representing 1% of the total genome sequence
(Zheng et al., 2007). The predictions of four automatic pseudogene discovery
programs were compared alongside the HAVANA manual annotation: the GIS-
PET method from the Genome Institute of Singapore, which infers pseudogenes
where paired-end diTags map to multiple genomic locations; PseudoPipe from
Yale University, which is based on the BLAST alignments of existing proteins
(Zhang et al., 2006); pseudoFinder from the University of California, Santa Cruz
(UCSC), which identifies homologies to reference genes using Human Blastz
Self Alignment; and pseudoFinder, also from UCSC, which targets retrotrans-
position events based on the genomic alignment of total human mRNA content.
The resulting data sets were quite dissimilar, with less than 20% of the total
pseudogene content being identified by all methods. The critical factor in this
disagreement was not the actual design of the pseudogene pipelines; rather it was
seen to be the annotation quality of the parent genes/proteins which were used
to make the predictions. In particular, the data set was seen to be contaminated
by pseudogene predictions that were based on parent CDSs seen, in retrospect,
to represent spurious translations (i.e., false positives). Clearly, then, the avail-
ability of a high-quality gene set to use as a starting point is a crucial resource
for pseudogene prediction.

Automated annotation, on the other hand, seems to be advantageous in iden-
tifying small degenerate blocks of CDS alignment representing older retrotrans-
position events that can be overlooked by manual annotators. However, as well
as generating false positives due to dubious input data, automated annotation
often struggles in making the distinction between pseudogenes and coding genes.
Unprocessed pseudogenes generally contain at least partially intact exonic struc-
tures, and if a significant CDS is detected, such a locus can be erroneously classed
as a coding gene. Similarly, a unitary pseudogene that has become inactivated
in recent time – due to perhaps a single mutation – is commonly described as a
coding locus (recent pseudogenization events may in fact reflect polymorphism;
this is discussed in Sections 9.2.4 and 9.2.5). It is in such situations that the power
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of the manual annotation approach is apparent, since the rate of false positive
predictions is very low.

In summary, there is currently no single prediction method for success-
fully identifying all categories of pseudogenes. The strategy being used by the
GENCODE consortium to describe the human content is therefore a consensus
approach: HAVANA manual annotation based on both transcriptional data and the
results of automatic pseudogene identification pipelines (Zheng et al., 2007). The
results of such human annotation can be viewed in the UCSC genome browser
(Kent et al., 2002).

9.1.7 The annotation of non-coding genes

The structures of around 20 000 protein coding genes are contained within fewer
than 2% of the human genome sequence (Lander et al., 2001). In recent years,
however, it has become apparent that a sizeable proportion of the remaining
98% of the genome sequence is in fact transcribed, producing non-coding RNAs
(ncRNAs) (Bertone et al., 2004; Birney et al., 2007). This category includes the
‘historical’ tRNA and rRNA classes of molecule, as well as snoRNAs, spliceo-
somal RNAs and miRNAs. Each of these classes is well represented in the Rfam
database, which provides a general resource for ncRNAs and other RNA elements
(Gardner et al., 2009). Rfam currently contains 1537 RNA families, including,
for example, 497 human nuclear tRNA genes. Information on miRNAs is also
collected within the miRBase repository; at present 5071 molecules from 58
different species are represented (Griffiths-Jones et al., 2008).

A distinct class of ncRNA has been the recent focus of excitement in the
RNA community: large non-coding RNAs, or lncRNAs. The existence of a
‘silent majority’ of non-coding transcription had in fact been suspected for a
number of years; the RIKEN Mouse Gene Encyclopedia Project, for example,
fully sequenced over 60 000 mouse cDNA molecules and classified 12 000 as
non-coding (Carninci et al., 2005). Indeed, genome-based microarray studies
suggest that transcription is essentially ubiquitous across the human genome
(Birney et al., 2007; Cheng et al., 2005; Kapranov et al., 2002; Willingham and
Gingeras, 2006); the challenge is now to ascribe functionality to these molecules
(Ponting et al., 2009). Recently, Guttman et al. used global chromatin maps in
order to identify mouse lncRNAs that were likely to be functional; of the 1600
lncRNAs identified, 95% showed evidence of purifying selection (Guttman et al.,
2009). Even so, lncRNAs as a whole remain poorly understood at present, with
only around a dozen individual molecules having a function described with confi-
dence. A noteworthy example is HOTAIRM1, which is an antisense transcript to
HOXA1 and HOXA2 , originating from the same CpG island promoter; it appears
to function in the modulation of HOX cluster gene expression (Rinn et al., 2007).

The major challenge in identifying and annotating lncRNAs is obtaining cer-
tainty that the transcript does not code for a protein. This problem is perhaps
better dissected by approaching it from the other side: how can we be sure that
an annotated CDS is not a spurious prediction built on an ncRNA? Automated



METHODS FOR IMPROVING GENOME ANNOTATION 219

annotation methods for gene finding are typically biased towards the construction
of coding genes, generating false positive CDSs at reasonable frequencies. These
can arise where translations are attached to pseudogenes which still undergo tran-
scription, as discussed above, and also where a CDS is predicted within a single
block of alignment – such as non-splicing cDNA or a 3′ UTR – simply because
the algorithm has identified a decent sized ORF. Even manual annotation can
have difficulty in distinguishing certain coding and non-coding loci.

In practice, the majority of mammalian CDSs are easy to confirm simply
because an enormous number of protein coding genes are now ‘known’, that is,
already identified and curated by a project such as RefSeq or Swiss-Prot (although
it should be noted that neither database is immune to false positives). If a poten-
tial CDS is not known, it may be possible to identify either a curated ortholog or
a paralogous gene family member. Alternatively, the CDS may have homology
to known functional domains, as assessed by querying a resource such as Pfam
(Finn et al., 2008). Finally, for a multiexon gene, the presence of a CDS is often
immediately apparent simply by its size and exonic structure; a 500 amino acid
translation covering 10 exons of a 10-exon gene is unlikely to represent a false
prediction. If the potential CDS lacks all of the above, then there are two pos-
sibilities: either the locus encodes a legitimate ‘orphan gene’ (i.e., a completely
novel gene which is lineage specific), or the translation is indeed spurious. This
represents a common dilemma in genome annotation, and these two possibilities
are difficult to distinguish with complete certainty. In lieu of the generation of
proteomics data, one approach that has had some success is to consider the codons
that make up the potential CDS. It has been shown that true CDSs can often be
distinguished from ORFs by the frequency with which certain DNA triplets occur;
in short, the DNA content of an ORF is essentially random, whilst that of a CDS
is not. It is this basic approach that has been used to classify lncRNAs as non-
coding in global analyses such as the chromatin mapping performed by Guttman
et al. (2009). In addition, a recent study comparing a set of over 1000 pre-
dicted human orphan genes taken from the Ensembl genebuild (filtered to remove
artifacts) against the mouse and dog genomes found that over 99% had codon
frequency scores that did not indicate CDS potential (Clamp et al., 2007). This
investigation therefore suggests that truly new proteins evolve rarely in the mam-
malian lineage. Such studies are undermined by the lack of equivalent proteomics
data to complement the high coverage of transcriptomes available to researchers.
However, efforts are currently underway to improve this situation; recent techni-
cal advances in mass-spectrometry, for example, are allowing global analyses of
protein content to be performed for the first time (Gstaiger and Aebersold, 2009).

In summary, aside from the small number of cases where experimental support
for activity is available, it can be seen that the annotation of lncRNAs is currently
a process based on negative evidence; annotation projects treat lncRNAs simply
as gene models for which a realistic CDS cannot be found. In the future, however,
more information about ncRNAs is likely to become available – perhaps in the
form of a greater understanding of secondary structures or functional sites – and it
may be that the identification of such genes will become a more proactive process.
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9.2 The impact of next generation sequencing
on genome annotation

The human genome took ten years to sequence, and the HGP remains one of
the most expensive scientific endeavors ever conceived (Lander et al., 2001). In
contrast, the 1000 genomes project has deposited more than 80-times as much
human genome sequence in public databases in under a single year of operation
(www.1000genomes.org; see Section 9.2.5). The key to this massive increase in
output is the rapid improvements made in DNA sequencing technology (Schuster,
2008; www.solexa.com; www.454.com; www.appliedbiosystems.com). As well
as providing more human genome sequences, such ‘next generation’ sequencing
platforms are also being used to rapidly generate genome assemblies for an ever-
increasing number of other species. As a result, scientists are gaining a deeper
understanding into both the genetic variation that exists within our species, and
also those genome changes which demarcate the branches on the evolutionary tree
of life. Furthermore, the same essential technology is also being used in the field
of transcriptomics, leading to an exponential rise in the amount of transcriptional
evidence available with which to construct gene models. In this section, we will
discuss the benefits of this next-generation technology to genome annotation.

9.2.1 The annotation of multispecies genomes

Evolutionary conservation represents a powerful tool for genome annotation. It
is now known, for example, that around 80% of human protein coding genes
share a 1:1 orthologous relationship with mouse genes, and that a significant
proportion of the remainder are accounted for by lineage-specific duplications
within gene families (Church et al., 2009). Existing genome annotation can be
mapped with success between species that are not distantly related; the annotation
of new genomes should therefore become progressively easier as more genomes
are described.

This theory was recently put into practice in a comparative study within
the Drosophila genus. Ten Drosophila genome sequences were generated at
differing levels of coverage for comparison against the pre-existing Drosophila
melanogaster and D. pseudoobscura genomes (Clark et al., 2007). In this
project, pair-wise alignments with D. melanogaster and D. pseudoobscura were
essential in converting the new scaffolds into contigs, as well as facilitating
comparative gene annotation via the projection of D. melanogaster gene models
onto each genome. This process was supplemented with ab initio gene prediction
methodologies, a requirement due to both the quality of the assemblies and
also the evolutionary distance between the species; the relative radiation in the
Drosophila genus is actually greater than of the mammalian clade. Stark et al.
subsequently used this data set to uncover a vast array of functional elements
in the fly, leading to the modification of 438 gene models within the manually
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annotated FlyBase gene set (Stark et al., 2007). Lin et al. further demonstrated
the power of this phylogenomics strategy, using the 12 genomes to develop a
comparative genomic metric to distinguish protein coding and non-coding gene
regions, allowing the identification 142 new genes (Lin et al., 2008).

The Ensembl analysis pipeline operates along similar principles; as noted in
Section 9.1.3, the alignment of protein sequences from related organisms is a
key stage of every new gene build. Furthermore, Ensembl genebuilds can take
this process further where the new genome is particularly close to a high-quality
genome such as human or mouse. The majority of gene models in the genome
of the orangutan Pongo pygmaeus , for example, were extrapolated from the
direct projection of the existing human models, thus circumnavigating the rela-
tive lack of transcriptional evidence in this species (Hubbard et al., 2009). Such
an approach was possible because the orangutan genome sequence is considered
to be good quality; it has ‘6× coverage,’ meaning that on average each base in
the genome will have been sequenced six times. Whilst the accuracy of the new
sequencing technologies is not lower than that of the old methods per se, the
high-throughput design of many new genome projects means that the coverages
achieved in such cases will be lower. The mammalian genome project is an effort
coordinated by the Broad Institute to sequence the genomes of 24 additional mam-
mals to 2× coverage, with the ultimate purpose of aiding the identification of
functional human elements by comparative mapping (www.broad.harvard.edu/
science/projects/mammals-models/mammalian-genome-project). The annotation
of such genomes is problematic since the underlying draft sequences are fragmen-
tary compared with high-coverage genomes, meaning that genes are frequently
incomplete or split into pieces on distinct sequence ‘scaffolds.’ Ensembl have
therefore developed a modified pipeline for these genomes. Firstly, a whole
genome alignment is performed between the low coverage genome and an anno-
tated reference genome (typically human). The gene structures in the reference
genome are then used to arrange the scaffolds into contigs containing intact
gene sequences, and CDSs in these gene models are extrapolated and corrected
as required based on the projection of the total CDS content from the refer-
ence genome. In the future, however, it seems fair to assume that the quality
of sequencing protocols will improve, as will the strategies used for sequence
assembly. In particular, there is some excitement regarding the potential of
nanopore technology, which may offer the possibility of directly sequencing
single molecules of DNA (Ashkenasy et al., 2005).

Finally, it should be noted that, while comparative annotation allows us to
identify the similarities between two genomes, it is less successful at identi-
fying those differences that ultimately distinguish the species at the phenotype
level. Two species genomes, for example, will typically be distinguished by
subsets of lineage-specific genes; such loci can prove difficult to identify by
phylogenomics (Toll-Riera et al., 2009). Furthermore, the problems discussed in
Section 9.1.6 regarding automated pseudogene annotation are exacerbated when
projecting coding genes from one genome onto another.
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9.2.2 Community annotation

Web-based community annotation projects aim to manually annotate or curate
sizeable data sets via the remote involvement of a large number of researchers
across the globe. The logic behind such projects is simple: the speed of man-
ual annotation can be dramatically elevated by a concomitant increase in the
number of annotators involved. These can be completely open, where any-
one with an internet connection can submit information of their choosing on
a purely voluntary basis, or restricted to a particular community of researchers.
Such projects are particularly valuable for species where comparative annota-
tion is of limited usefulness, that is, those without closely related counterparts
in other genome sequencing projects. In the case of the fungus Aspergillus nidu-
lans , the latter approach is being used; 32 laboratories have been involved in
manually annotating and curating over 2500 protein coding genes thus far, pro-
viding detailed information on inferred functionality (Wortman et al., 2009).
The RNA WikiProject, in comparison, uses the Wikipedia schema to provide an
open-source community resource for ncRNA molecules. Researchers with knowl-
edge of ncRNA are invited to submit functional annotation of specific ncRNA
molecules in conjunction with the usual publication process (Daub et al., 2008).
More recently, a Gene Wiki portal has been set up at the Wikipedia Web site,
aiming to provide functional information for every human gene in the form of
user-generated content (Huss et al., 2008). This initiative thus seeks to rival the
Entrez Gene hub at the NCBI web server, and the advantage of the Wiki approach
has been stated as an increase in the speed and flexibility of reporting.

However, several criticisms can be leveled at open community annotation
projects. Firstly, there is some skepticism that trained scientists will freely
give up their time and effort in suitable numbers to annotate or curate gene
articles, a process for which they will achieve no tangible reward or recognition.
Secondly, there are questions regarding the accuracy of the entries. While the
malicious hijacking of content does not appear to be a major issue in practice,
there are concerns that the quality of the annotation may not always be up to
the acceptable standard. Furthermore, there may be issues of consistency, even
when entries are produced by competent scientists following written guidelines;
one researcher may accept a borderline CDS as valid, whereas another one may
reject it. One highly desirable characteristic of a complete genome annotation
set is that all loci are built along precisely the same criteria. This is of course
a natural characteristic of automated annotation methodologies, and it can be
achieved for manual annotation efforts such as HAVANA, RefSeq and UniProt,
where the number of annotators is small enough to keep the project training
centralized in one geographic location.

For community annotation, a common solution to this problem is to bring
a large number of researchers together in one location over a number of days,
allowing gene building methods to become standardized and a large number of
loci to be constructed. The success of such ‘jamborees’ was demonstrated by
the preliminary annotation of the complete D. melanogaster genome, which was
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manually produced by 14 scientists over a two-week period at the Celera institute
(Adams et al., 2000). More recently, genome or mRNA annotation jamborees
have been held for Xenopus , pig and cow (unpublished data); with the rapid
increase in genome sequences requiring annotation, such efforts are likely to
remain common over the next few years. For such efforts to succeed, it is vital
that the data produced is made freely available in a browser or database. Ensembl,
for example, allows members of the zebrafish community to add functional data
to the reference sequence via the DAS track provided.

9.2.3 Alternative splicing and new transcriptomics data

Traditionally, the transcriptome was regarded as the total set of RNA molecules
produced by a particular species. Today, a tighter definition defines it as a spe-
cific transcript set for an individual cell at a particular stage of development,
including information on the relative abundance of each RNA (Wang et al.,
2009). Clearly, the human physiology supports a large number of distinct tran-
scriptomes. The production of these different transcript sets ultimately occurs via
gene regulation, which has both a qualitative and quantitative effect on the RNA
molecules transcribed. Alternative splicing is one of the major mechanisms by
which the action of gene regulation is manifested. The majority of human genes
are subjected to alternative splicing, leading to an increase in both the size of
the proteome and overall metabolic complexity (Matlin et al., 2005). At present,
there is a general lack of experimental data linking specific alternative protein
isoforms to alternative functionality. However, it has recently been shown that
global splicing patterns in the human genome can frequently be correlated with
tissue-specific expression profiles (Wang et al., 2008a). It is therefore clear that a
full understanding of human metabolism will depend on a complete description
of alternative splicing within our genome.

While certain genomic motifs influencing alternative splicing have been
described (Wang and Burge, 2008), our current understanding as to how
alternative transcripts are generated at the sequence level remains limited. At
present, it is not possible to predict the occurrence, let alone the structure, of
alternative transcripts based on the genome sequence alone. As such, while
ab initio annotation methods can locate individual splice sites with reasonable
efficiency, they cannot recapitulate actual alternative splicing patterns. Instead,
annotation must depend entirely on transcriptional evidence. Traditionally, as
discussed in Section 9.1, this entails constructing gene models based on the
alignment of ESTs, mRNAs, and cDNAs (i.e., low-throughput libraries) against
the genome sequence, either manually or computationally.

At present, only a small number of other genomes possess a level of EST
and mRNA-based transcriptional coverage comparable to that seen for human,
largely because generating RNA libraries of appreciable size is expensive and
labor-intensive. However, recent years have seen a shift from the production of
such low-throughput libraries to the use of new high-throughput methodologies.
The first step forward into the new era of ‘transcriptional profiling’ was taken by
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the development of the serial analysis and cap analysis of gene expression systems
(SAGE and CAGE respectively; Shiraki et al., 2003; Velculescu et al., 1995).
These methodologies both generate large sets of ‘tags’ corresponding to distinct
mRNAs isolated within the target cell. While these tags are short, typically around
20 nucleotides long, they are useful for profiling the expression levels of different
mRNAs within the sample. Even so, this process is not efficient; the majority
of tags within a given set cannot be unambiguously mapped to the genome
sequence, and it is thus difficult to distinguish individual splice variants within
a particular locus. For these same reasons, the use of CAGE and SAGE tags in
genome annotation has thus far met with limited success; in particular, it has
proved very difficult to incorporate this information into automated annotation
pipelines. CAGE tags have displayed one practical benefit to manual annotation,
however; since they are designed to capture information at the 5′ end of mRNAs,
they often provide support for alternative transcriptional start sites.

Instead, the true transcriptomics revolution looks set to begin with the advent
of the RNA-Seq methodology (Morin et al., 2008). This technique, which is
still being perfected, utilizes essentially the same ‘next generation’ sequencing
technology that is driving the explosion in genome sequencing described above.
In short, one of a number of modern ‘deep sequencing’ platforms is used to
rapidly produce millions of 30–400 bp RNA fragments from a total RNA sample;
such fragments can then be aligned to genome sequences in order to facilitate
transcriptional profiling. RNA-Seq is significantly faster and cheaper than the
CAGE/SAGE methodology, and the generation of reads is not limited to the
transcript ends. Furthermore, RNA-Seq libraries provide highly accurate data on
levels of transcription; information that, at present, is lacking from all genome
annotation projects. Finally, RNA-Seq can be used to provide information on
alternative splicing. This technology thus promises to allow us to compare (and
annotate) the transcriptional levels of distinct splice variants, and also to identify-
ing novel splice junctions that have not been picked up by the traditional Sanger
sequencing pathways (Wang et al., 2009).

The challenge, then, becomes the integration and interpretation of this infor-
mation into annotation programs. Once again, the major problem is the com-
putational mapping of millions of relatively small RNA fragments (most of
which are 70–110 bp) to a genome sequence, and there are several issues to
be resolved. Firstly, experience with large genomes indicates that reads are fre-
quently mapped with equivalent fidelity to more than one genomic location. Such
reads have typically been discarded as non-informative matches from those global
transcriptome analyses published thus far (given that the number of reads in a
library typically runs into the millions, this does not necessarily lead to a major
loss of coverage). However, this should become less of a problem over time
as read lengths inevitably increase; alternatively, a paired-end approach where
reads are taken from both ends of an mRNA is proving to be helpful. Secondly,
mapping is greatly complicated by the fact that the data sets contain a mixture
of splicing and non-splicing sequences. Reads which do not contain intronic
sequence are relatively easy to align (assuming they do not align to multiple
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locations); although in terms of annotation their use is likely to be limited to the
fine-mapping of transcriptional start sites and polyadenylation sites (i.e., the start
and end points of a transcriptional unit). In contrast, reads which span exon junc-
tions can be difficult to align, since the portion of sequence covering one exon
may be small. This problem can be reduced to some extent by mapping the reads
to a database of known splice junctions rather than the total genome sequence;
while this solution does not support the identification of previously undescribed
splice sites, it can successfully identify exon skipping events (which represent one
of the most common forms of alternative splicing). However, the identification
of novel splice sites within the RNA-Seq data sets is highly desirable, and this
has been achieved in mouse with some degree of success by aligning the reads
against a set of potential splice junctions extrapolated from within known exonic
and intronic sequences (Mortazavi et al., 2008). Alternatively, novel exons have
been found by clustering groups of reads alongside the genomic alignment of pre-
existing ESTs (Sultan et al., 2008). In spite of the remaining technological issues,
a recent RNA-Seq-based survey of human transcription showed that up to 94% of
genes undergo alternative splicing, a higher proportion than previously estimated
(Wang et al., 2008a). Furthermore, RNA-Seq has been used to survey the existing
annotation of the nematode Caenorhabditis elegans , identifying both new exons
and splice junctions as well as at least 80 putative new genes (Hillier et al., 2009).

In the near future, next-generation genome sequencing will be combined with
RNA-Seq in the description of new genomes. While RNA-Seq alone is likely to
be of limited value in the de novo annotation of new genomes (since mapping the
reads successfully depends on pre-existing annotation), a gene set constructed by
phylogenomics could be used as the scaffold onto which the reads are aligned;
indeed, the alignment of these reads could then be used reciprocally to improve
the gene models. In fact, it is now possible to perform in-depth transcriptome
surveys of species for which no genome species is available, since RNA-Seq
reads can be combined ab initio into whole mRNA molecules.

9.2.4 The annotation of human genome variation

To date, annotation of the human genome has been focused almost entirely on the
primary ‘reference’ assembly which was published in 2001 (Lander et al., 2001),
in large part simply because until recently this was the only human genome
sequence available (with the exception of the competing assembly generated by
Celera (Venter et al., 2001)). Whilst numerous changes to the assembly have been
made since 2001, these have taken the form of small, localized improvements as
opposed to large-scale rebuilds. Historically, therefore, annotators have regarded
this reference assembly as an essentially static entity; a mosaic of DNA fragments
from several individuals intended to provide a genome sequence representative
of our species. Today, it is well established that the genomes of individuals
contain both small-scale and large-scale differences when compared against one
another. Base pair mutation causes single nucleotide polymorphisms (SNPs), and
it is generally estimated that the SNP content of any two human genomes leads
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to an overall sequence difference of approximately 0.1% (International HapMap
Consortium, 2003). SNPs can be silent, that is, without consequence, or lead
to phenotypic change, for example where CDSs are affected. However, it is
now known that the greater proportion of total genome variation is caused by
instability at the chromosome level, leading to sequence duplications, deletions
and other rearrangements (Iafrate et al., 2004; Sebat et al., 2004). Duplications
and deletions are often classed as copy number variants (CNVs); segments of
DNA over 1 kb in size which have been shown to present in differing copy
numbers in at least two individuals (Feuk et al., 2006). As with SNPs, CNVs
may lead to phenotypic consequences for the individual.

Genomic variation within gene loci often becomes apparent based on the
alignment of transcriptional data. EST and cDNA libraries are derived from a
wide range of individuals; hence mutations in the reference genome are often
apparent as mismatched base pairs. Pertinently, manual annotators have found
numerous CDSs in the reference assembly that have been disrupted by one or few
mismatches, typically leading to the introduction of a premature STOP codon.
If transcriptional evidence exists which does not support this apparent pseudo-
genization event – that is, supports an intact CDS – then this locus represents a
polymorphic pseudogene. It is possible to extend this process by considering the
large set of SNPs genotyped by the HapMap project (International HapMap Con-
sortium, 2003; Frazer et al., 2007); that is, a SNP may be found which supports
an intact CDS in another individual. Since the reference assembly is intended to
represent the genome of our species and not an individual, it has been decided that
polymorphic pseudogenes are to be replaced with intact CDSs where appropriate
evidence is found (with specific caveats for certain gene families; see below);
this is happening under the jurisdiction of the Genome Reference Consortium
(GRC; http://ncbi.nlm.nih.gov/projects/genome/assembly/grc/).

9.2.5 The annotation of polymorphic gene families

Annotation projects are particularly affected by genome variation when tackling
certain gene families. Often, a cluster of genes expands in a locus from a sin-
gle progenitor via tandem duplication, as occurred during the initial evolution
of the HOX gene family. The four mammalian HOX clusters can be described
as stable, since the individual gene members are largely common to the order,
with orthology readily assigned between species (Lemons and McGinnis, 2006).
However, other gene clusters are dynamic, displaying polymorphism due to both
ongoing base-pair mutation and chromosomal instability. Such rapidly evolving
gene families are typically involved in chemosensation, reproduction, or immu-
nity; where there is selective pressure to generate a flexible pool of protein
(Church et al., 2009; Horton et al., 2008; Mudge et al., 2008). A major problem
in the annotation of unstable gene families is that the underlying genome tiling
paths are often incomplete, and may in certain cases be misassembled. This is
largely because the duplicative units making up the cluster (‘cassettes’) tend to
be highly similar to one another at the sequence level, making it difficult to select
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the correct clones for sequencing. This occurs where the formative duplications
are recent events, though gene conversion can also act to homogenize the cas-
settes (Chen et al., 2007). During annotation, the presence of gap regions leads to
genes being fragmented, such that partial models have to be constructed. Further-
more, where neighboring cassettes are highly similar at the sequence level, the
genes contained within are often seen to be identical. This can cause problems
for automated annotation pipelines such as Ensembl, since cDNAs can become
aligned so as to span adjacent loci by using a combination of exons from each;
the result is the creation of an erroneous gene model. Manual annotation is thus
required to correctly represent such loci. Finally, gene clusters frequently contain
unprocessed (often polymorphic) pseudogenes that often represent highly recent
inactivation events; this causes confusion in automated annotation pipelines, as
discussed in Section 9.1.6.

The high sequence similarity between such cassettes also indicates that the
cluster is likely to be subject to CNV. The presence of large-scale polymor-
phism impacts the sequencing process: gene clusters in the reference assembly
can consist of sequence combined from multiple haplotypes, giving a composite
haplotype that may not exist in nature. This precise problem was observed in
the initial analysis of the major histocompatibility complex (MHC). This highly
variable locus represents a collection of genes and gene families covering 4 Mb
on chromosome 6, predominantly involved in the immune response. The obvious
solution was to re-sequence the cluster as a single haplotype; to date, this remains
the largest haploid region of the human reference assembly. The problem with
this approach is that this haplotype is linked to a single individual, and as such
it does not adequately ‘summarize’ this region over our species as a whole. In
other words, the architecture of the MHC does not exist as a ‘parental’ state
against which the structures of other haplotypes provided for comparison could
then be seen to exist as ‘derived’ states. Indeed, the pattern of variation within the
locus is so complex as to make deriving a parental assembly impossible. Instead,
the region can only be successfully represented as a series of haplotypes; eight
distinct MHC haplotypes have in fact already been sequenced, and these were
recently subjected to an automated SNP-based variation analysis in combination
with HAVANA manual annotation (Horton et al., 2008).

As well as providing a valuable resource to the medical community, the
generation and comparison of eight MHC haplotypes will also provide a useful
test-model for the analysis of other complex genome regions. This is pertinent,
since the GRC intend to provide alternative haplotypes for all regions in the
reference assembly subjected to significant structural variation. Notably, the time
and labor costs involved in describing some 30 Mb of MHC sequence to the level
of detail desired were sizeable. This is significant, since the amount of genetic
variation described for our species is set to increase dramatically in the imme-
diate future. The first additional human genomes to be sequenced were those of
Craig Venter and James Watson, published in 2007 and 2008 respectively (Levy
et al., 2007; Wheeler et al., 2008), and since this time the genome sequences of a
Chinese and Korean individual have also been described (Ahn et al., 2009; Wang
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et al., 2008b). Of greater potential significance is the data from the 1000 genomes
project, which will be released to the public in 2009 (www.1000genomes.org).
This multinational initiative was set up in 2008 with the goal of rapidly obtain-
ing a complete catalog of human variants that are present in over 1% of the
population, this being achieved by sequencing some 1200 genomes from distinct
geographic populations using next-generation technology. This enormous data
set will contain SNPs (far more than were generated by the HapMap project)
and CNVs. Though this information will undoubtedly be hugely beneficial to
genome science, the challenge of understanding and displaying this variation is
vast. Annotation projects must evolve in order to cope with this exponential
increase in genome sequence.

At present, a working strategy to integrate genome annotation with large-scale
variation data sets has yet to be finalized, although wide-scale manual annota-
tion is clearly unsuitable for a data set of this size. Instead, integration must
depend heavily on the design of effective computational methodologies. We can
anticipate that large-scale efforts to annotate genetic variation of any species will
be dependent on the availability or production of a single high-quality reference
genome annotation set against which changes can be identified. In theory, the
subsequent alignment of (for example) 1000 genome sequences is then essentially
a problem of computing power, as is the identification of the individual SNPs
contained within. Following this, given a set of high-quality gene models as a
template for comparison, automated methodologies are likely to prove effective
in identifying pseudogenization events and amino acid substitutions where one-
to-one orthologies are inferred. However, one problem is that sequencing errors
across 1000 genomes are likely to be relatively common, and these will be diffi-
cult to distinguish from low-frequency SNPs. Second, complex gene families are
once again likely to prove troublesome, and this is particularly significant given
the genic variation that exists in such regions. It remains to be seen whether the
shotgun-based next-generation sequencing strategies will be able to successfully
provide quality assemblies over these regions, given the high degree of sequence
similarity that is often found within. Even if quality assemblies are available,
it will likely prove difficult to correctly discern the relationship between gene
members of different complex haplotypes using computational means; in other
words, to match a particular SNP to the relevant gene. Before solutions are found
to such problems, initiatives such as the 1000 genomes project are likely to be of
compromised value when it comes to the description of complex gene families.
Even so, given the advances made in genomics over the last decade and the pace
at which sequencing technology is evolving, it seems fair to assume that any set-
backs are likely to be temporary. Indeed, if anything, the speed of the genomics
revolution is likely to increase over the second decade of the twenty-first century.
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Sequences from prokaryotic,
eukaryotic, and viral genomes
available clustered according
to phylotype on a
Self-Organizing Map
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Ikemura

10.1 Introduction

Since the development of next-generation DNA sequencers, complete genome
sequences of more than 2000 species have been determined, and metagenomic
analyses covering a large number of species in various environments have become
common (Amann et al., 1995; Delong and Karl, 2005). It is highly likely that
microorganisms in diverse environments contain an abundance of novel genes
and, therefore, intense research activities are underway using samples obtained
from a wide variety of environments, such as seawater and soil, and human
intestines. The number of sequences obtained from metagenomic analyses and
registered in the International Nucleotide Sequence Databases (INSD) has soared
above 17 million. For most of these genomic sequence fragments, however,
it is difficult to estimate the phylogeny of organisms from which individual
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sequences are derived or to determine the novelty of such sequences. Most of
the metagenomic sequences registered in the databases have limited utility with-
out phylogenetic information or functional annotation. This situation has arisen
because orthologous sequence sets, which cover a broad phylogenetic range and
are required for the creation of reliable phylogenetic trees, are unavailable for
sequences of novel genes, making it difficult to estimate the phylogeny of organ-
isms from which subject sequences are derived through conventional sequence
homology searches. A method for estimating the phylogeny of organisms and
gene functions based on principles different from sequence homology searches
is urgently needed.

We previously modified the self-organizing map (SOM) developed by Koho-
nen’s group (Kohonen, 1990; Kohonen et al., 1996; Kohonen, 1997) for genome
informatics on the basis of batch-learning SOM (BLSOM), making the learning
process and resulting map independent of the order of data input (Kanaya et al.,
2001; Abe et al., 2002; Abe et al., 2003). The BLSOM thus developed could
recognize phylotype-specific characteristics of oligonucleotide frequencies in a
wide rage of genomes, and permitted clustering of genome fragments according
to phylotypes with neither the orthologous sequence set nor the troublesome and
error-prone processes of sequence alignment (Abe et al., 2002; Abe et al., 2003).
Furthermore, the BLSOM was suitable for actualizing high-performance parallel
computing with high-performance supercomputers such as ‘the Earth Simula-
tor,’ and permitted clustering (self-organization) of almost all genomic sequences
available in the International DNA Databanks on a single map (Abe et al., 2005;
Abe et al., 2006a; Abe et al., 2006b). In practice, by focusing on the frequen-
cies of oligonucleotides (e.g., tri- and tetranucleotides), the BLSOM has allowed
highly accurate classification (self-organization) of most genomic sequence frag-
ments on a species basis without providing species-related information during
computation. Unlike conventional phylogenetic estimation methods, it requires
no orthologous sequence set or sequence alignment and can perform the esti-
mation based only on oligonucleotide frequencies. The present unsupervised and
alignment-free clustering method, BLSOM, is thought to be the most suitable one
for phylogenetic estimation for sequences from novel unknown organisms (Abe
et al., 2005; Hayashi et al., 2005; Uchiyama et al., 2005; Ricke et al., 2005).
Other research groups have also proposed alternative methods for performing
phylogenetic estimation for environmental sequences obtained from metagenomic
analyses (Teeling et al., 2004; Huson et al., 2007; McHardy et al., 2007; McHardy
and Rigoutsos, 2007).

In addition to phylogenetic estimation, BLSOM can be widely applied to
visualizing its results on a plane and extracting novel sequences from novel
species systematically. We actually employed BLSOM for analyses of environ-
mental genomic fragments in joint research with experimental research groups
analyzing various environmental and clinical samples (Hayashi et al., 2005;
Uchiyama et al., 2005; Ricke et al., 2005). To exemplify various genomics
analyses based on the BLSOM, this chapter introduces a strategy for how to
efficiently explore the genomic sequences of novel unknown microorganisms by
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utilizing numerous metagenomic sequences and how to determine the diversity
and novelty of genomes in environmental microbial communities.

10.2 Batch-learning SOM (BLSOM) adapted
for genome informatics

The neural network algorithms can be supervised or unsupervised. In the unsu-
pervised training, there is no external teacher to oversee the learning process.
The learning normally is driven by a similarity measure without specifying tar-
get vectors. The self-organizing map modifies the weights so that the most similar
vectors are assigned to the same output unit, which is represented by an example
vector. SOM is an unsupervised neural network algorithm that implements a
characteristic nonlinear projection from the high-dimensional space of input
data onto a two-dimensional array of weight vectors (Kohonen, 1990; Kohonen
et al., 1996; Kohonen, 1997). In the conventional SOM developed by Kohonen,
the map is a two-layered network that can organize a topological map of cluster
units from a random starting point. The network combines an input layer with a
competitive layer of processing units. During the self-organization process, the
cluster unit whose weight vector matches the input pattern most closely (typically
based on minimum Euclidean distance) is chosen as the winner. The winning unit
and its neighboring units update their weights. After training is complete, pattern
relationships and grouping are observed from the competitive layer. This yields
the graphical organization of pattern relationships. These maps result from an
information compression that retains only the most relevant common features
of the set of input signals. This preserves effectively the topology of the high-
dimensional data space. It is thought of as a flexible net that is spread into the
multidimensional ‘data cloud.’ Because the net is a two-dimensional array, it can
be visualized easily. The weight vectors (w ij ) are arranged in the two-dimensional
lattice denoted by i (= 0, 1, . . . , I − 1) and j (= 0, 1, . . . , J − 1).

The learning process of the SOM was designed to be independent of the
order of input of vectors on the basis of batch-learning SOM (BLSOM), as we
previously reported (Kanaya et al., 2001; Abe et al., 2002). In the conventional
SOM (Kohonen, 1990; Kohonen et al., 1996; Kohonen, 1997), the initial weight
vectors w ij are set by random values, but in the present method the vectors
are initialized by principal components analysis (PCA: Step 1). For mapping
multidimensional space data onto a plane, PCA rotates the vector space with
the eigenvectors (the principal components) of the covariance matrix as a new
basis. The principal components are orthogonal, and the plane spanned by the
two first components, PC1 and PC2, was usually used for linear data projection.
Weights in the first dimension (the number of lattice points in the first dimension
is denoted by I ) were arranged into 250 nodes for 10 kb sequences (Figure 10.1)
corresponding to a width of five-times the standard deviation (5σ1) of the first
principal component; and the second dimension (J ) was defined by the nearest
integer greater than (σ2/σ1) × I .
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Figure 10.1 BLSOMs for non-overlapping 10 kb and overlapping 100 kb
sequences of 13 eukaryotic genomes. (a) Tetra-BLSOMs. (b) Penta-BLSOMs.
Nodes that include sequences from plural species are indicated in black; those
that contain no genomic sequences are indicated in white, and those con-
taining sequences from a single species are indicated with different gray lev-
els and with letters as follows: C. elegans (C), Arabidopsis (A), rice (R),
Drosophila (D), Fugu (F), zebrafish (Z), and human (H). For color pictures,
refer to http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/
Figure_1.pdf.

The weight vector on the ij th lattice (w ij ) was represented as follows:

w ij = xav + 5σ1

I

[
b1

(
i − I

2

)
+ b2

(
j − J

2

)]
, (10.1)

where xav is the average vector for oligonucleotide frequencies of all input
vectors, and b1 and b2 are eigenvectors for the first and second principal com-
ponents. In Step 2, the Euclidean distances between the input vector x k and all
weight vectors w ij were calculated; then x k was associated with the weight vec-
tor (called w i′j ′) satisfied in minimal distance. After associating all input vectors
with weight vectors, updating was performed according to Step 3.
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In Step 3, the ij th weight vector was updated by

w (new)
ij = w ij + α(r)




∑
xk∈Sij

x k

Nij
− w ij


 , (10.2)

where components of set Sij are input vectors associated with w i′j ′ satisfying
i − β(r) ≤ i′ ≤ i + β(r) and j − β(r) ≤ j ′ ≤ j + β(r). Here, w (new)

ij is an
updated vector. The two parameters α(r) and β(r) are learning coefficients for the
rth cycle, and Nij is the number of components of Sij . α(r) and β(r) are set by

α(r) = max{0.01, α(1)(1 − r/T )}, (10.3)

β(r) = max{1, β(1) − r}, (10.4)

where α(1) and β(1) are the initial values for the T -cycle of the learning
process. In the present study, we selected 80 for T , 0.6 for α(1), and 60 for
β(1). The learning process is monitored by the total distance between x k and
the nearest weight vector w i′j ′ , represented as

Q(r) =
N∑

k=1

{||x k − w i′j ′ ||2} , (10.5)

where N is the total number of sequences analyzed.

10.3 Genome sequence analyses using BLSOM

10.3.1 BLSOMs for 13 eukaryotic genomes

To initially investigate clustering power of BLSOM for a wide range of eukary-
otic sequences, we analyzed tetra- and pentanucleotide frequencies in 300 000
non-overlapping 10 kb sequences and overlapping 100 kb sequences with a
10 kb sliding step from 13 eukaryotic genomes. These genomes included human
Homo sapiens , puffer fish Fugu rubripes , zebrafish Danio rerio, rice Oryza
sativa, Arabidopsis thaliana, Medicago truncatula, Drosophila melanogaster,
Caenorhabditis elegans, Dictyostelium discoideum, Plasmodium falciparum,
Entamoeba histolytica, Schizosaccharomyces pombe, and Saccharomyces cere-
visiae. The BLSOM, which was adapted to genome informatics, was constructed
as described previously (Kanaya et al., 2001; Abe et al., 2002; Abe et al., 2003;
Abe et al., 2005; Abe et al., 2006a; Abe et al., 2006b). First, oligonucleotide fre-
quencies in the 10 or 100 kb sequences were analyzed by PCA, and the first and
second principal components were used to set the initial weight vectors that were
arranged as a two-dimensional array. After 80 learning cycles, oligonucleotide
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frequencies in the sequences could be represented by the final weight vectors
in the two-dimensional array, and the resulting BLSOM revealed clear species-
specific separations (Figure 10.1). The sequences were clustered (self-organized)
primarily into species-specific territories; lattice points that include sequences
from a single species are indicated in color, and those that include sequences
from more than one species are indicated in black; for color pictures, refer to
http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/Figure_1.
pdf. Sequences from each species were clustered on both the tetra- and pentanu-
cleotide BLSOMs (Tetra- and Penta-BLSOMs; Figures 10.1(a) and 10.1(b)). For
example, 97% and 98% of analyzed human sequences were classified into the
human territories (‘H’ in Figure 10.1) in the 10 kb Tetra- and Penta-BLSOMs,
respectively.

In the 10 kb BLSOMs, intra-species separations were evident; for example,
human was divided into two major territories in the 10 kb Tetra-BLSOM. In the
Penta-BLSOM, however, human sequences were classified into a single contin-
uous territory, indicating that despite wide variations among 10 kb segments of
human sequences, the BLSOM recognized common features of pentanucleotide
frequencies in human sequences. In the 100 kb BLSOMs, interspecies (but not
intra-species) separations were more prominent than in the 10 kb BLSOMs; in
the 100 kb Tetra- and Penta-BLSOMs, each species had one major territory.
Furthermore, the species territory was surrounded by contiguous white lattices,
which contained no genomic sequences. The species borders could be drawn
automatically on the basis of the contiguous white lattices, because the vectors
of the species-specific lattices that were located even near a territory border were
distinct between territories.

10.3.2 Diagnostic oligonucleotides for phylotype-specific
clustering

G+C% has long been used as a fundamental parameter for phylogenetic
characterization of species and especially of microorganisms. However, G+C%
is apparently too simple as a parameter to differentiate a wide variety of species.
We previously found the G+C%, which was obtained from the weight vector
of each node on BLSOMs for genomic sequence analyses, to be reflected in
the horizontal axis (Kohonen, 1997). Supporting this previous finding, G+C%
increased from left to right on the Tetra- and Penta-BLSOMs (Figure 10.1);
that is, sequences with high G+C% were located on the right side. Importantly,
sequences even with the same G+C% were clearly separated on BLSOMs by
a complex combination of oligonucleotide frequencies, resulting in accurate
phylotype separation. BLSOMs recognized the species-specific combination of
oligonucleotide frequencies that is the representative signature of each genome
and enabled us to identify the frequency patterns that are characteristic of
individual genomes. The frequency of each oligonucleotide in each lattice
vector in the 100 kb BLSOMs was calculated and normalized with the level
expected from the mononucleotide composition at each lattice point, and
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the observed/expected ratios are illustrated in red (overrepresented), blue
(underrepresented), or white (moderately represented) in Figure 10.2; for color
pictures, refer to http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-
2009/Figure_2.pdf. This normalization allowed oligonucleotide frequencies in
each lattice point to be studied independently of mononucleotide compositions.
Transitions between red (over-representation) and blue (under-representation)
for various tetra- and pentanucleotides often coincided exactly with species
borders. Several diagnostic examples for the species separations are presented in
Figure 10.2(a). AATT was overrepresented in rice, Drosophila , and C. elegans;
underrepresented in Fugu and zebrafish; and moderately represented in human
and Arabidopsis . CAGT was overrepresented in all three vertebrates but under-
represented in rice, Arabidopsis, Plasmodium , and Dictyostelium . BLSOMs

Tetra-BLSOM AACC

ACAC

ATGG CAGT

CTTG GGGA TTAACTCA

AGGA AGGC

CGGA CGGC

AGGT

AAGG AATT

A

C
Z

D R

F

H

(a)

Figure 10.2 Level of each tetranucleotide (a) and pentanucleotide (b) in 100 kb
BLSOMs. Diagnostic examples of species separations are presented. Level of
each tetra- and pentanucleotide in each node in the 100 kb Tetra- and Penta-
SOMs (Figure 10.1) was calculated and normalized with the level expected
from the mononucleotide composition of the node. The observed/expected ratio
is indicated with levels of blackness shown at the bottom of the figure. The
100 kb BLSOMs in Figure 10.1(a) and (b) are presented in the first panel
with letters indicating species name: C. elegans (C), Arabidopsis (A), rice (R),
Drosophila (D), Fugu (F), zebrafish (Z), and human (H). For other species, refer
to the legend of http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-
2009/Figure_1.pdf, and for color pictures, refer to http://trna.nagahama-i-
bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/Figure_2.pdf.
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GAATC

AATTGAAGAA ACAGG

GCAGT GCTAG GTACCG

CAGTC CAGTG CGGCG CTAAC

TACAG TCATG TGAGT TTAAC

Penta-BLSOM

(b)
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Figure 10.2 (continued)

utilized a complex combination of many oligonucleotides for sequence
separations, which results in classification according to species.

10.3.3 A large-scale BLSOM constructed with all sequences
available from species-known genomes

In Figure 10.1, a good separation (self-organization) of eukaryotic sequences
according to phylotypes (species, in this case) was observed. We next exam-
ined phylogenetic separation of prokaryotic sequences, by applying the BLSOM
to the phylogenetic prediction of sequences obtained by metagenome analyses.
Large-scale metagenomic studies of uncultivable microorganisms in environmen-
tal and clinical samples have recently been conducted to survey genes useful in
industrial and medical applications and to assist in developing accurate views of
the ecology of uncultivable microorganisms in each environment. Conventional
methods of phylogenetic classification of gene/genomic sequences have been
based on sequence homology searches and therefore the phylogenetic studies
focused inevitably on well-characterized gene sequences, for which orthologous
sequences from a wide range of phylotypes are available for constructing a reli-
able phylogenetic tree. The well-characterized genes, however, often are not
industrially attractive. It would be best if microbial diversity and ecology could
be assessed during the process of screening for novel genes with industrial and
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scientific significance. The present unsupervised and alignment-free clustering
method, BLSOM, is thought to be the most suitable one for this purpose because
there was no need of orthologous sequence sets previously (Kanaya et al., 2001;
Abe et al., 2002; Abe et al., 2003; Abe et al., 2005; Abe et al., 2006a; Abe
et al., 2006b).

Metagenomic analyses can be applied to not only environmental but also
medical samples such as clinical samples, and, therefore, are usable for explor-
ing unknown pathogenic microorganisms that cause novel infectious diseases;
mixed genome samples in the medical and pharmaceutical fields may contain
DNA from a wide range of eukaryotes, as well as from humans. When we
consider phylogenetic classification of genomic sequences derived from species-
unknown environmental microorganisms obtained by metagenome studies, it is
necessary to construct BLSOMs in advance with all available sequences not only
from species-known prokaryotes but also species-known eukaryotes, viruses and
organelles compiled in the International DNA Databanks. According to our pre-
vious studies of metagenome sequences (Abe et al., 2005), the BLSOM was
constructed with oligonucleotide frequencies in 5 kb sequence fragments. In DNA
databases, only one strand of a pair of complementary sequences is registered.
Our previous analyses revealed that sequence fragments from a single prokary-
otic genome are often split into two territories that reflect the transcriptional
polarities of the genes present in the fragment (Abe et al., 2003). For phylo-
type classification of sequences from uncultured microbes, it is not necessary to
know the transcriptional polarity of the sequence, and the split into two terri-
tories complicates assignment to species. Therefore, we previously introduced a
BLSOM in which frequencies of a pair of complementary oligonucleotides (e.g.,
AACC and GGTT) were summed, and the BLSOMs for the degenerate sets of
tetranucleotides were designated DegeTetra-BLSOMs.

Using a high-performance supercomputer, ‘the Earth Simulator’ (Abe
et al., 2006b), we could analyze almost all genomic sequences available from
2813 prokaryotes, 111 eukaryotes, 31 486 viruses, 1728 mitochondria, and 110
chloroplasts. The 2813 prokaryotes were selected because at least 10 kb genomic
sequences were registered in the International DNA Sequence Databases. One
important target of the phylogenetic classification of metagenome sequences
is the sequences derived from species-unknown novel microorganisms. It is
necessary to keep good resolution for microorganism sequences on the BLSOM
by avoiding excess representation of sequences derived from higher eukaryotes
with large genomes. Therefore, in the cases of higher eukaryotes, 5 kb sequences
were selected randomly from each large genome up to 200 Mb in Figure 10.3 (a).
In this way, the total quantities of prokaryotic and eukaryotic sequences were
made almost equal. The separation between eukaryotes and prokaryotes was
achieved with a high accuracy of 95%; the separation between organelles and
viruses and between nuclear genomes and viruses was also achieved with a high
accuracy of approximately 80%; for a color picture, refer to http://trna.nagahama-
i-bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/Figure_3.pdf. Clear separation
of the species-known prokaryote sequences into 28 major families was also
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Eukaryotes

Prokaryotes

Eukaryotes

Prokaryotes

(a)

(b)

Figure 10.3 BLSOM for phylogenetic classification of environmental sequence.
(a) DegeTetra-BLSOM of 5 kb sequences derived from species-known 2813
prokaryotes, 111 eukaryotes, 1728 mitochondria, 110 chloroplasts, and 31 486
viruses. (b) Sargasso sequences longer than 1 kb were mapped on the 5 kb
DegeTetra-BLSOM, after normalization of the sequence length. For color pic-
tures, refer to http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-
2009/Figure_3.pdf.

observed (data not shown). The separation of eukaryotic sequences according to
families was also observed on this 5 kb BLSOM. During BLSOM computation,
no information was given to the computer regarding which species each
sequence fragment belonged to (unsupervised learning algorithm).

10.3.4 Phylogenetic estimation for environmental DNA
sequences and microbial community comparison using
the BLSOM

More than 17 million genomic sequence fragments obtained from various envi-
ronments through metagenomic analysis have been registered in the International
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Nucleotide Sequence Databases. A major portion of them is novel and has a
limited utility without phylogenetic and functional annotation. The phylogeny
estimation of genomic sequence fragments of novel microorganisms, based on
the BLSOM, requires in advance the determination of oligonucleotide frequency
of all species-known microorganisms sequenced. Therefore, a large-scale
BLSOM map (Figure 10.3 (a)) covering all known sequences, including those
of viruses, mitochondria, chloroplasts, and plasmids was constructed. On this
BLSOM, numerous sequence fragments derived from an environmental sample
could be mapped; that is, the similarity of the oligonucleotide frequency in
fragmental sequences from environmental samples with that of sequences from
species-known genomes was examined. In Figure 10.3 (b), 210 000 sequences
with a fragment size of 1 kb or more, which were collected from the Sargasso
Sea near Bermuda (Venter et al., 2004), were mapped; for a color picture, refer to
http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/Figure_3
.pdf. The analysis of all sequence fragments obtained from one subject
environmental sample can estimate numbers and proportions of species present
in the sample. Approximately 70% of sequences from the Sargasso Sea were
mapped to the prokaryotic territories, while the rest were mapped to the
eukaryotic, viral or organelle territories.

To further identify the detailed phylogenies of the environmental sequences
thus mapped to the prokaryotic territories, a BLSOM analyzing 5 kb genomic
sequence fragments only from 2389 known prokaryotes was created with
degenerate tetranucleotides (Figure 10.4 (a), BLSOM for prokaryotic phylotype
groups); for a color picture, refer to http://trna.nagahama-i-bio.ac.jp/TakashiAbe
_paper_figure/KBB-2009/Figure_4.pdf. For the 2389 species-known prokaryotes
used to create this BLSOM, their separation into 28 phylogenetic groups was
examined, revealing that 85% of the sequences separated (self-organized)
according to their phylogenetic groups. The reason why 100% separation was
not achieved is thought to be mainly because of horizontal gene transfer between
the genomes of different microbial species (Abe et al., 2003; Abe et al., 2005).
The 140 000 metagenomic sequences from the Sargasso Sea that were mapped
previously to the prokaryotic territories in Figure 10.3 (b) were remapped on the
BLSOM for the detailed prokaryotic phylotype assignment. They broadly spread
across the BLSOM, demonstrating that the sequences belonged to a wide range
of phylogenies (Figure 10.4 (b)). Interestingly, there were areas on the map where
metagenomic sequences were densely mapped, which may indicate dominant
species/genera. In sum, the estimation of prokaryotic phylogenetic groups could
provide phylogenetic information for almost half of sequence fragments from
the Sargasso Sea. The procedure above can be used to establish the phylogenetic
distribution of microbial communities living in the subject environment and
thus to understand the diversity of floras (Figure 10.4 (c)); for a color picture,
refer to http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/
Figure_4.pdf.

Through successive mapping of the subject sequences on a BLSOM created
with the sequences from known genomes of each phylogenetic group, such as
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Nodes that include sequences from plural species are indicated in black, those that contain no genomic sequences are
indicated in white, and those containing sequences from a single species are indicated in color as follows:
Acidobacteria (  ), Actinobacteria (  ), Alphaproteobacteria (  ), Aquificae (  ), Bacteroidetes (  ), Betaproteobacteria
(  ), Chlamydiae (  ), Chlorobi (  ), Cenibacterium (  ), Chloroflexi (  ), Crenarchaeota (  ), Cyanobacteria (  ),
Deinococcus-Thermus (  ), Deltaproteobacteria (  ), Dictyoglomi (  ), Epsilonproteobacteria (  ), Euryarchaeota (  ),
Fibrobacteres (  ), Firmicutes (  ), Fusobacteria (  ), Gammaproteobacteria (  ), Nanoarchaeota (  ), Nitrospirae (  ),
Planctomycetes (  ), Spirochaetales (  ), Thermodesulfobacteriales (  ), Thermotogales (  ), Verrucomicrobiae (  )

Cyanobacteria

Archaea

Firmicutes

Proteobacteria (a, b, e, d, g )

(a)

(b)
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Figure 10.4 Phylogenetic classification of sequences from an environmen-
tal sample. (a) DegeTetra-BLSOM of 5 kb sequences derived from species-
known 2813 prokaryotes. (b) Sargasso sequences that were classified into
prokaryotic territories in Figure 10.3 (b) were mapped on the 5 kb
DegeTetra-BLSOM constructed with the sequences only from the species-
known 2813 prokaryotes. (c) Microbial distribution of Sargasso sequences
predicted by BLSOM. For color pictures, refer to http://trna.nagahama-i-
bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/Figure_4.pdf.
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one family, further detailed phylogenetic estimation at the genus or species level
becomes possible. In other words, by tracking phylogeny in a stepwise manner
from the domains of organisms (e.g., eukaryotes and prokaryotes), through the
phylogenetic groups to the genus or species level, more detailed phylogenetic
estimation can be carried out. In addition, this procedure can determine the nov-
elty of obtained environmental sequences at various phylogenetic levels, allowing
the efficient detection of sequences with high novelty.

Currently, metagenomic analyses focusing on an abundance of viruses in
seawater have been reported (Edwards and Rohwer, 2005). Since virus genomes
contain no rDNA, conventional methods of phylogenetic estimation based on
rRNA sequences cannot be used. BLSOM analysis for fully sequenced virus
genomes showed a separation according to their phylogenies, allowing us to
conduct phylogenetic estimation in the viral kingdom without relying on orthol-
ogous sequence sets or sequence alignments. The publication of a large-scale
BLSOM result obtained by separating (self-organizing) all genomic sequences
available, including those of viruses and organelles, will provide a foundation
of novel and large-scale genomic information, which is useful for a broad range
of life sciences, such as medical and pharmaceutical sciences, and related indus-
trial fields. The mapping of novel sequences on the large-scale BLSOM that was
constructed with a high-performance supercomputer can be performed using a
PC-level computer; our group has created a PC software program for the BLSOM
mapping. It is recommended that readers interested in the PC software program
or large-scale BLSOM maps contact the authors.

10.3.5 Reassociation of environmental genomic fragments
according to species

When a certain genomic fragment containing a useful gene of scientific or indus-
trial interest is found through metagenomic analyses, it is practically difficult to
determine other genes present on the subject genome, which construct a genetic
system such as a metabolic pathway along with the respective useful gene. This
is because the cloning of genetic fragments derived from a mixed genome sam-
ple causes most of the genes to separate from each other, making it seemingly
impossible to trace their interrelationships. When dominant species are present
in the environmental sample, the entire genome of each dominant species may
be reconstructed by shotgun sequencing to accumulate numerous genomic frag-
mental sequences. However, dominant species are often well-studied culturable
species or species closely related to them. If sequence fragments from novel
unculturable species other than dominant species can be reassociated according
to species in silico, a part or the outline of the genetic system (e.g., metabolic
pathway) of novel species can be understood.

In order to reassociate sequences obtained through a metagenomic study on a
species basis, the creation of a large-scale BLSOM for the mixture of the numer-
ous metagenomic sequences plus all sequences of known species was effective
(Abe et al., 2005). For example, Figure 10.5 shows a BLSOM constructed for
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Species-known and environmental samples
Biofilm

Sargasso

Biofilm sequences (acid mine: low complexity)

Sargasso sequences clustered (79%) Sargasso sequences classified (21%; 92 genera)

(a) (b)

(c) (d)

F
T L

Figure 10.5 DegeTetra-BLSOM of species-known, plus environmental
sequences. (a) Species-known plus environmental sequences: lattice points
that contain sequences from a single phylotype are indicated with different gray
levels; those that contain only Sargasso or biofilm sequences are also indicated
with different gray levels (� or �); and those that include environmental and
species-known sequences or those from more than one known phylotype are
indicated in black. (b) Biofilm sequences: square root of the number of biofilm
sequences classified into each lattice point is indicated by the height of the bar
distinctively indicated with different gray levels to show the dominant species
reported by Tyson et al., (2004): Ferroplasma (F), Leptospirillum (L), and
Thermoplasmatales (T). (c) Sargasso sequences unclassified: square root of the
number of Sargasso sequences classified into each lattice point containing no
species-known sequences is indicated by the height of the bars. (d) Sargasso
sequences classified: square root of the number of Sargasso sequences that
were classified into lattice points containing species-known sequences from a
single phylotype is indicated by the height of the bar distinctively indicated
with different gray levels to show the phylotype. For color pictures, refer to
results of our original paper (Abe et al., 2005) or http://trna.nagahama-i-
bio.ac.jp/TakashiAbe_paper_figure/KBB-2009/Figure_5.pdf.
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the mixture of numerous sequence fragments obtained from the Sargasso Sea
reported by Venter et al. (2004), sequence fragments from biofilms of mine
drainage water reported by Tyson et al. (2004), and 5 kb sequence fragments
obtained from approximately 1500 species-known prokaryotes that have been
registered in the DNA databases with sequences longer than 10 kb; for a color
picture, refer to http://trna.nagahama-i-bio.ac.jp/TakashiAbe_paper_figure/KBB-
2009/Figure_5.pdf. Tyson et al. focused on the biofilm of mine drainage water as
a sample containing less complex genomes, while Venter et al. analyzed samples
from the Sargasso Sea as an example containing highly complex genomes. During
computation, no species-related information except the tetranucleotide frequency
of each sequence was given to the computer. The sequences from the biofilm
gathered (self-organized) into some clearly defined small areas, suggesting that
the sequences in each small area belonged to the same species; the vertical bar in
Figure 10.5 (b) indicates the number of sequences present in one node. However,
the sequences from the Sargasso Sea were widely distributed; 79% of them did
not overlap with the sequences of known species (Figure 10.5 (c)), suggesting
that these sequences belonged to novel genomes; for details, refer to the authors’
original paper (Abe et al., 2005). The reassociation of fragmental sequences on
a species basis may allow estimation of the outline of the metabolic pathways
of each species living in the environment and may help to clarify the collective
biological systems built by microbial communities in the subject environment.

10.4 Conclusions and discussion

Large-scale metagenomic analysis covering various environmental samples has
been carried out, and the application of bioinformatics to phylogenetic estimation,
identification of genetic regions, and estimation of protein functions for numer-
ous environmental sequences will further develop into a new research field. The
present BLSOM is an unsupervised algorithm that can separate most sequence
fragments based only on the similarity of oligonucleotide frequencies. It can sepa-
rate sequences on a species basis with no other preliminary information to clarify
species-specific characteristics in genomic sequences. Unlike the conventional
phylogenetic estimation methods, the BLSOM requires no orthologous sequence
set or sequence alignment, and therefore, this method is suitable for phylogenetic
estimation for novel gene sequences. It can be used to visualize an environmental
microbial community on a plane and to accurately compare it between dif-
ferent environments. Large-scale metagenomic analyses using recently released
next-generation sequencers are also underway, and the numerous environmental
sequences obtained have been registered and published in the public databases.
At present, the sequence length determined by the next-generation sequencers is
primarily up to 200 bases. Therefore, the development of approaches to achieving
accurate phylogenetic estimation for such shorter sequences is required. We are
now trying to improve the accuracy of phylogenetic estimation with the BLSOM
for the shorter sequences.
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For almost half of genes from novel genomes sequenced, it has become
clear that protein functions cannot be estimated through sequence homology
search. To complement sequence homology search, the establishment of a protein
function estimation method based on different principles is important. We have
recently applied BLSOM to protein sequence studies to analyze the frequency of
oligopeptides, and found the separation (self-organization) of proteins according
to their functions (Abe et al., 2009). This suggests that the BLSOM may be used
as a protein function estimation that does not rely on sequence homology search
and a novel method to find scientifically or industrially important protein genes
that have not been found by sequence homology searches. Large-scale BLSOM
analysis covering vast quantities of data from genomic sequences and protein
sequences facilitates the efficient extraction of useful information that supports
research and development in a broad range of life sciences and industrial fields.
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11.1 Introduction

In the post-genomic era of systems biology, the cell itself can be viewed as a
complex network of interacting proteins, nucleic acids, and other biomolecules
(Hartwell et al., 1999; Eisenberg et al., 2000). Graph representation adopted from
mathematics and computer science has been widely applied to describe various
molecular systems including protein interaction maps, metabolites and reactions,
transcriptional regulation maps, signal transduction pathways, and functional
association networks (Barabasi and Oltvai, 2004; Girvan and Newman, 2002;
Tong et al., 2004; Balazsi et al., 2005). Applications based on network analysis
have been proven useful in areas such as predicting protein functions, identifying
targets for structural genomics, facilitating drug discovery and design, and expe-
diting novel biomarker identification (Sharan et al., 2007; Chuang et al., 2007;
Hopkins, 2008; Huang et al., 2008).

In the first four sections of this chapter, we will review four types of
commonly conducted network analyses on large-scale molecular networks and
their applications: (1) Topology analysis focuses on the characterization of
global network structures using quantitative measures, or network statistics. The
applications of topology analysis include important node identification

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
 2010 John Wiley & Sons, Ltd
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and protein function prediction. (2) Motif analysis is the extraction and
characterization of frequently occurring small sub-network patterns known as
motifs, with the identification of motifs in homogeneous, integrated and dynamic
networks as its applications. (3) Modular analysis focuses on the clustering
of molecular networks to extract community-like modular structures, while its
applications comprise module-assisted protein function prediction and module-
based biomarker discovery. (4) Network comparison consists of approaches to
find the best matches between two molecular networks, with its applications in
the alignment of the same type of networks, the comparison among different
types of networks, and the query using a small network against a large-scale
network. In the fifth section, we will compare the main functions and features
of eight commonly used network tools that can facilitate the visualization and
analysis of molecular networks. At the end of each section, challenges as well
as future directions of each type of network analysis will be discussed.

11.2 Topology analysis and applications

Topology analysis refers to the characterization of molecular network structure,
including the global network topology, using quantitative measures, or network
statistics. The applications of topology analysis include the identification of
important nodes in large-scale molecular networks according to topology mea-
sures such as connectivity and centrality, the target selection based on identified
important nodes, as well as protein function prediction based on linkages of
the network.

11.2.1 Global structure of molecular networks: scale-free,
small-world, disassortative, and modular

It is widely accepted that most large-scale molecular networks, such as PPI net-
works of major model organisms (Jeong et al., 2001; Yook et al., 2004; Giot et al.,
2003; Li et al., 2004; Stelzl et al., 2005; Rual et al., 2005), transcriptional regula-
tory networks where nodes are transcription factors (TFs) and target genes (TGs)
and edges are directed transcriptional regulations (Milo et al., 2002; Shen-Orr
et al., 2002), and metabolic networks where nodes are metabolites and edges are
reactions (Wagner and Fell, 2001; Jeong et al., 2000), approximate a scale-free
topology (Barabasi and Oltvai, 2004). Generally, a network is scale-free if it has a
power-law degree distribution, denoted as P(k) ∼ k−γ , where P(k) is the fraction
of nodes and k is the node degree, with a constant degree exponent γ often smaller
than 3. For example, Figure 11.1 illustrates the degree distribution of the human
interactome network (9630 proteins and 36 641 interactions without self-loop)
based on the eighth release of the Human Protein Reference Database (HPRD;
Mishra et al., 2006), where the degree exponent γ = 1.88. The power-law distri-
bution of the node degree indicates that the higher connectivity a node has, the
fewer number of such nodes exist in the network. One possible hypothesis for the
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Figure 11.1 The scale-free topology of a human interactome network. A human
interactome network consisting of 9630 proteins and 36 641 interactions based on
the eighth version of the HPRD has a power-law degree distribution. The node
degree k and the number of nodes are log-transformed.

origin of the observed scale-free topology is through gene duplication (Pastor-
Satorras et al., 2003). Due to the scale-free topology, a small portion of nodes with
the highest connectivity, denoted as hubs, are highly influential in the network.

The scale-free topology contributes to the robustness of molecular networks.
Due to the sparse connectivity of the majority of nodes in a scale-free network,
even removing 80% of randomly selected nodes would not disconnect the rest of
the network (Albert et al., 2000). On the other hand, a scale-free network is vul-
nerable to the selective removal of those highly connected nodes; that is, attacking
hubs will shatter the whole system into isolated clusters (Albert et al., 2000).

As a consequence of the scale-free topology, large-scale molecular networks
have the small-world property (Cohen and Havlin, 2003). The small-world prop-
erty of a network, usually depicted by a high average clustering coefficient and
short characteristic path length (Table 11.1), means that the majority of node
pairs can be connected by a short path consisting of a small number of edges. For
example, a typical path length between the most distant metabolites in metabolic
networks is four (Wagner and Fell, 2001; Jeong et al., 2000). The small-world
property indicates that the majority of network components can quickly respond
to any perturbation within the network. Therefore, such a property also con-
tributes to the robustness of molecular networks.

Another global property of large-scale molecular networks is the disassorta-
tivity (Barabasi and Oltvai, 2004), which means hubs are more likely to connect
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Table 11.1 Summary of network measures/statistics.

Network measures Description and usage Calculation
(network statistics)

Degree k, in-degree
kin, out-degree
kout

• k measures the
connectivity of a node.
In directed networks,
kin and kout measure the
in-coming and
out-going connectivity
of a node, respectively.

• Hubs are defined as a
group of nodes with the
highest degree values.

• Undirected networks:
k = the number of
edges linked to a node.

• Directed networks:
kin = the number of
in-coming edges;
kout = the number of
out-going edges of a
node.

• Average degree
< k > = 2L/N , where
L is the total number of
edges, N is the total
number of nodes, and
< > denotes average.

Clustering
coefficient C

• C measures how
densely connected the
neighbors of a node are.

• The average clustering
coefficient <C>

denotes the tendency of
nodes in a network to
form clusters. It is also
an indicator of the
modularity in a
network.

• For a node v, the
clustering coefficient is

C = 2n

k(k − 1)
,

where k is the number
of its neighbors in the
network, and n is the
total number of edges.

Shortest path length
luv

Characteristic path
length <l>

• luv between two nodes
is the number of edges
of the shortest path
between the two nodes.

• <l> is the median of
the means of the
shortest path lengths,
which measures the
overall navigability of
the network.

• luv = the smallest
number of edges
between two nodes u

and v.

• luv is infinite if nodes u

and v are not linked by
a path.
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Table 11.1 (continued).

Network measures Description and usage Calculation
(network statistics)

• Short characteristic
path length and high
average clustering
coefficient indicate that
a network has the
small-world property.

Eccentricity ε • ε of a node is the
distance (the longest
shortest path) between
this node and any node
in the network.

• Average eccentricity
<ε> of all nodes in a
network may indicate
whether a network has
the small-world
property.

• The eccentricity of a
node v is

ε = Max{lvi},
where i can be any
node in the network,
and lvi is the shortest
path length between
nodes v and i.

Node betweenness
centrality CB(v)

Edge betweenness
centrality CB(e)

• CB(v) or CB(e)

measures the number of
shortest paths that go
through the node or the
edge.

• Bottlenecks are defined
as the nodes with the
highest betweenness
centrality values (Yu
et al., 2007).

• Edge betweenness can
be used to cluster a
network (Girvan and
Newman, 2002).

• CB(v) for a node v is

CB(v)=
∑

i 	=v 	=j∈V,i 	=j

σij (v)

σij

,

where σij is the number
of shortest paths from i

to j , and σij (v) is the
number of shortest
paths from i to j that
go through the node v.

• The edge betweenness
CB(e) is calculated
accordingly.
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to less-connected nodes, or non-hubs. Maslov and Sneppen found such a property
in a yeast PPI network and a yeast transcriptional regulatory network, by sys-
tematically comparing these two networks with random networks that have the
same degree distributions but fully rewired edges (Maslov and Sneppen, 2002).
The disassortativity increases the overall robustness of a network, as well as
suppressing crosstalk between different sub-network components, which may
correspond to functional modules that perform distinct functions (Hartwell et al.,
1999; Maslov and Sneppen, 2002).

Molecular systems consist of functional units known as functional modules
which carry out various distinct functions during biological processes (Hartwell
et al., 1999; Eisenberg et al., 2000). In molecular networks, functional modules
are expected to correspond to topologically densely connected and loosely inter-
connected sub-networks (Spirin and Mirny, 2003; Girvan and Newman, 2002).
The coexistence of the scale-free topology and topologically and functionally
self-contained modules results in the hierarchical modularity, that is, hierarchi-
cally organized modular structures, which is universally observed in large-scale
molecular networks (Ravasz et al., 2002, Yook et al., 2004; Wagner et al., 2007;
Ravasz, 2009).

11.2.2 Network statistics/measures

In order to quantitatively characterize networks, a number of network
statistics/measures have been proposed, such as degree, clustering coefficient,
shortest path length, eccentricity, and betweenness centrality. These network
statistics, summarized in Table 11.1, are applied to large-scale molecular
networks to characterize various molecular systems and help extract biologically
meaningful information.

11.2.3 Applications of topology analysis

Major applications of topology analysis in molecular networks are important
node identification and targeting, and protein function prediction. Topologically
important nodes in a network, such as hubs and bottlenecks, can be inferred
by network statistics. Pair-wise linkage and known functional annotations have
provided a handful of approaches to predict protein functions. Another category of
protein function prediction methods based on functional modules in the network
will be discussed in Section 11.4.

11.2.3.1 Important node identification: hubs and bottlenecks

In highly heterogeneous scale-free molecular networks, nodes are not created
equal with respect to connectivity. Nodes with the highest local connectivity and
the highest global centrality measured by degree and betweenness centrality are
defined as hubs and bottlenecks, respectively (Figure 11.2). Hubs and bottlenecks
are the most commonly studied important nodes in molecular networks.
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Figure 11.2 Hubs and bottlenecks in a PPI network. In the network, each node
is a protein and each edge is a physical interaction between two proteins. A hub
represents a node with high local connectivity, and a bottleneck represents a node
with high betweenness centrality in a network. The white node in the center of the
figure is both a hub and a bottleneck.

Hubs are pivotal to the integrity of molecular systems. Jeong et al. reported
that, in a large-scale yeast PPI network, proteins that have more interactions
are more likely to be essential, which are vital to the survival of the organ-
ism (Jeong et al., 2001). Using five large-scale PPI networks of different model
organisms, including human, mouse, yeast, worm, and mouse-ear cress, Wuchty
confirmed the correlation between protein connectivity and essentiality (Wuchty
et al., 2003). In addition, assessed by a method called Evolutionary Excess Reten-
tion, hubs in all five PPI networks were observed to be more evolutionarily
conserved than non-hubs (Wuchty et al., 2003). Similarly, Said et al. reported a
correlation between connectivity and essentiality in a large-scale yeast PPI net-
work from DIP (Database of Interacting Proteins; Said et al., 2004; Xenarios
et al., 2002). The authors also found that toxicity-modulating proteins were sim-
ilar in network measures/statistics to essential proteins. Based on these important
proteins, protein complexes and signaling pathways related to toxicology were
identified (Said et al., 2004).

Yu et al. defined bottlenecks as the proteins with the highest betweenness
centrality values in an integrated conglomerate yeast PPI network combining
available binary interactions from various data sources (Yu et al., 2007). Bottle-
necks can be viewed as bridge-like connectors between different modules/clusters
in a network, and are generally more likely to be essential in both PPI and
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regulatory networks. In directed networks such as transcriptional regulatory
networks, betweenness is a more significant indicator of essentiality than degree,
based on further classification of nodes into hub-bottleneck, hub-non-bottleneck,
non-hub-bottleneck, non-hub-non-bottleneck and their essentiality (Yu et al.,
2007). In addition, bottlenecks were found to correspond to the dynamic
components of the PPI network, based on the evidence that they were more
poorly co-expressed with their neighbors than non-bottlenecks (Yu et al., 2007).

Though defined elegantly as a centrality measure, betweenness considers only
the number of the shortest paths that go through a node, and ignores any other
sub-optimal path. This approximation of true centrality in a network may lead
to errors in identifying the global centers in a network. Missiuro et al. recently
proposed an information flow score as an alternative centrality measure (Missiuro
et al., 2009). This model views a global network with weighted edges (with
weights indicating the reliability of interactions) as a circuit, and calculates the
information flow score as the current going through each of the nodes. The
nodes with the highest information flow scores were considered as centers of the
network. Similar to bottlenecks, such center proteins were likely to be essential
or phenotype-encoding (Missiuro et al., 2009). The advantage of this centrality
measure is that it not only takes all paths in the network into account, but allows
the consideration of weighted networks as well, which is important due to the
incompleteness and errors in currently identified large-scale networks, especially
PPI networks (Yu et al., 2008; von Mering et al., 2002).

11.2.3.2 Targeting identified important nodes

Focusing on cancer proteins in a predicted human interactome with edge weights
indicating the reliability of interactions, Jonsson and Bates found that the con-
nectivity of cancer-related proteins is significantly higher than proteins that are
not related to cancer (Jonsson and Bates, 2006), consistent with the notion that
phenotypically important proteins are likely to be hubs (Said et al., 2004; Jeong
et al., 2001). The study also reported, through domain analysis, that cancer-related
proteins contained a higher ratio of highly promiscuous structural domains com-
pared with proteins unrelated to human cancer; as well as reporting on the central
roles of these cancer-related proteins in the network through a network clustering
modular analysis (Jonsson and Bates, 2006).

Huang et al. overlaid human cancer pathways from KEGG (Kanehisa and
Goto, 2000) onto an integrated large-scale human PPI network, and built the
Human Cancer Pathway Protein-Interaction Network (HCPIN; Huang et al.,
2008). In HCPIN, the top central proteins that are hubs as well as bottlenecks
include cancer-related essential proteins, such as p53, Grb2, Raf1, EGFR, and so
on. In addition, the authors summarized a general framework called BioNet target
selection strategy to systematically study the physical, structural and topological
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properties of pathway-involved proteins, such as proteins in cancer-related
pathways or particular complexes (Huang et al., 2008).

11.2.3.3 Protein function prediction based on direct connections

The available large-scale molecular networks, especially PPI networks from high-
throughput experiments, have enabled the automatic prediction of protein function
in the context of networks. Network-based protein function prediction methods
can be classified into two categories: methods that utilize direct connections, and
approaches based on extracted clusters/modules (Sharan et al., 2007). The latter
category of methods and their applications will be discussed in Section 11.4.5.1.

The simplest and most straightforward method is to assign annotations to an
unknown protein based on the functions of its interacting partners. Using a yeast
PPI network and the annotations of direct neighbors, Schwikowski et al. predicted
up to three functions for each of the 364 previously uncharacterized proteins in
the network (Schwikowski et al., 2000). One limitation of this method is that no
statistical significance is assessed during the process. Another limitation is that the
method only considers its level-1 neighbors, that is, direct interacting partners, to
predict the annotation for a protein, and ignores the global topology of the whole
PPI network. Hishigaki et al. improved the above method by computing a χ2-like
score to assess each function assignment, and assessed the predictive accuracy for
protein functions to be over 50% (Hishigaki et al., 2001). Chua et al. proposed,
tested and confirmed that a protein is likely to share functions with not only
its level-1 neighbors but also its level-2 neighbors, which are proteins that have
the same level-1 interacting partners (Chua et al., 2006). Based on this notion,
the authors devised a functional similarity score that assigns weights to proteins
according to their distance to the target protein, and scored each function based
on its weighted frequency in the level-1 and level-2 neighbors (Chua et al., 2006).

In addition to considering the pair-wise linkages for protein function pre-
diction, another group of methods takes the global topology connections into
account. Vazquez et al. proposed a method to assign functions to unclassified
proteins based on not only the functions of known neighbor proteins but also
possible functions of unknown neighbor proteins (Vazquez et al., 2003). Specif-
ically, to assign a function to each unclassified protein, their method aims to
globally minimize a scoring function E:

E = −
∑
i,j

Jij δ(σi, σj ) −
∑

i

hi(σi),

where Jij is the adjacency matrix of the interaction network for the unclassified
proteins, δ(i, j) is the discrete delta function that equals 1 if σi = σj and 0 oth-
erwise, and hi(σi) is the number of interacting partners of protein i with known
function σi . The two terms in the scoring function globally optimize the functional
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coherence of neighboring un-annotated proteins, as well as between neighboring
un-annotated and annotated proteins, respectively. Karaoz et al. proposed a sim-
ilar approach that in turn could handle each function separately (Karaoz et al.,
2004). Their method first assigns a state si for each annotated protein i to be 1
if the protein has a specific function and −1 otherwise, and then it minimizes an
‘energy’ function E by assigning 1 or −1 states to un-annotated proteins:

E = −1

2

n∑
i=1

n∑
j=1,j 	=i

wij sisj ,

where n is the number of proteins in the network, wij is the edge weight, and si

is the state assigned to protein i. This function is optimized by a local search.

11.2.4 Challenges and future directions of topology analysis

Despite the capability of novel high-throughput experimental techniques to gen-
erate a huge amount of data for network assembly, the protein and regulatory
networks of major model organisms are still largely incomplete, as well as error-
prone (Yu et al., 2008; von Mering et al., 2002). This poses a major challenge for
network analysis, including topology analysis. Several approaches are designed
to address this issue, such as using a relatively small network of high confidence
for analysis; that is, trading off accuracy with coverage (Missiuro et al., 2009),
or adding, removing, or replacing interactions in current large-scale networks to
mimic false interactions (Wuchty et al., 2003). A fundamental solution to this
challenge would be the development of more advanced experimental techniques.
While a tremendous effort of expert curations on the generated data might be
necessary, integrative computational approaches may contribute to improve the
data quality in the networks as well.

A related issue is that most results of topology analysis are based on static
conglomerate networks, that is, assembled networks that contain all available data
of certain organisms regardless of the contexts in which the data are collected.
However, recent studies on dynamic networks suggest that network statistics,
motifs, and identified important nodes based on static networks may be different
from those of context-dependent networks (Luscombe et al., 2004; Han et al.,
2004). This challenge requires future studies on topology analysis to not only use
more complete and accurate data, but also take contexts into account; that is, to
understand and be aware of the temporal, spatial, and environmental conditions
under which a specific interaction takes place.

In addition, currently most network statistics/measures do not consider edge
weights, which may have various meanings, such as the reliability/confidence
of an interaction, or physical distance of two proteins. Because the data in
the network usually contains false interactions, when calculating network statis-
tics/measures, taking into account edge weights such as the edge confidence
might result in more meaningful statistics that better characterize the network.
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11.3 Network motif analysis

11.3.1 Motif analysis: concept and method

A network motif is an interconnected substructure of several nodes in a net-
work that occurs significantly more frequently than random expectations (Milo
et al., 2002). Recently, substantial efforts have been made to identify and charac-
terize motifs in different types of networks, including transcriptional regulatory
networks (Shen-Orr et al., 2002; Milo et al., 2002; Dobrin et al., 2004; Yeger-
Lotem et al., 2004; Mangan and Alon, 2003; Lee et al., 2002), ecological food
webs (Kashtan et al., 2004; Milo et al., 2002), and social networks (Kashtan
et al., 2004; Milo et al., 2002).

Although the size and complexity of these networks varies (from tens of
nodes in social networks to millions in the World Wide Web), the algorithms
designed to identify network motifs are largely similar. A motif identification
algorithm generally has the following two steps. First, a network is scanned for
all possible n-nodes patterns that are connected substructures of n nodes, and
the frequency of each pattern recurring in the network is recorded. Second, the
frequency of each pattern is compared with that in randomized networks where
edges are rewired and node degrees (both out-degrees and in-degrees in directed
networks) are preserved in order to assess the statistical significance. A pattern
is considered a motif if the frequency of the pattern in the network of interest is
more than n (n is an integer usually larger than two) standard deviations greater
than their mean number of appearances in the randomized networks (Shen-Orr
et al., 2002; Milo et al., 2002).

Using this algorithm, the most frequently identified three-node motifs are
the ‘feed-forward loop’ motif in transcriptional regulatory networks and neuron
networks, the ‘three chain’ motif in food webs, the ‘three-node feedback loop’
motif in electronic circuits, and the ‘feedback with two mutual dyads’ motif in the
World Wide Web (Shen-Orr et al., 2002; Milo et al., 2002; Lee et al., 2002). The
most frequently identified four-node motifs are ‘bi-fan’ in transcriptional regu-
latory networks, neuron networks and electronic circuits, ‘bi-parallel’ in neuron
networks, food webs and electronic circuits, and ‘four-node feedback loop’ in
electronic circuits. Due to the fact that distinct motifs are found overrepresented
in different networks, motifs may be considered as the basic building blocks of
networks (Shen-Orr et al., 2002).

11.3.2 Applications of motif analysis

For molecular networks, the motif identification and analysis has been applied on
homogeneous networks in which all the edges are of the same type (Kashtan et
al., 2004; Dobrin et al., 2004; Lee et al., 2002; Shen-Orr et al., 2002; Milo et al.,
2002), and integrated networks where edges are of different types (Zhang et al.,
2005; Mangan and Alon, 2003). Studies have also been conducted to compare
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the motif changes between static conglomerate networks and dynamic networks
that correspond to specific contexts (Luscombe et al., 2004).

11.3.2.1 Motif analysis in homogeneous networks

The motif analysis on homogeneous molecular networks is mainly focused on
transcriptional regulatory networks. Shen-Orr et al. systematically identified
network motifs in the well-characterized transcriptional regulatory network
of Escherichia coli (Shen-Orr et al., 2002). The authors found three types
of highly significantly recurring motifs in the network: namely ‘feed-forward
loop’ (FFL), ‘single input module’ (SIM), and ‘dense overlapping regulons’
(DOR), with each motif having a specific regulatory pattern in controlling gene
expression (Figure 11.3 (a)). An FFL is a three-node motif, in which a TF
regulates the expression of another TF, and both TFs regulate a common TG. In
the current E. coli transcriptional regulatory network, FFLs characterize 40 such
regulation patterns. In a SIM, a number of TGs are controlled by the same TF.
These TGs are likely to be co-expressed, and their protein products are likely
to interact. Sixty-eight SIMs are currently available in the E. coli regulatory
network, among which SIMs with more TGs occur less frequently. A DOR is a
layer of interactions between a set of TFs and their TGs, with a many-to-many
regulatory relationship between TFs and TGs.

These three frequently occurring motifs may have specific functions in the
process of controlling gene expression. For example, an FFL may help resist a
transient external stimulus in the cell. In an FFL, the first TF can either directly
activate the TG or indirectly activate it through a second TF. For the former,
when the activation signal of the first TF is transient, the second TF is activated
to regulate the TG; therefore the TG is immediately inactivated when the first
TF shuts down. A SIM motif occurs in the system when a group of genes
work simultaneously to perform a certain function or when the group of genes
is involved in the same metabolic pathway. In the DOR motifs, the genes in
the same motif share the common biological functions and genes seem to be
clustered into different transcriptional groups by these motifs.

11.3.2.2 Motif analysis on integrated networks

The motif detection method has also been applied on integrated networks,
which integrate multiple types of molecular data. Yeger-Lotem et al. identified
composite motifs in an integrated network combining PPIs and transcriptional
regulations in Saccharomyces cerevisiae (Yeger-Lotem et al., 2004). The
identified motifs include a ‘two-protein mixed-feedback loop’ (TML) motif,
five types of three-protein motifs (namely ‘protein clique,’ ‘co-regulated
interacting proteins,’ ‘feed-forward loop,’ ‘co-pointing,’ and ‘mixed-feedback
loop’; Figure 11.3 (b)), and several four-protein motifs that are composed of the
combinations of three-protein motifs. These motifs based on integrated networks
consist of at least two types of edges, and thus are more complex than motifs
identified from homogenous networks.



MOLECULAR NETWORK ANALYSIS AND APPLICATIONS 265

Feed-forward loop 
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Figure 11.3 Frequently identified motifs and motif themes in molecular net-
works. A black node represents a TF, and a white node represents a TG or its
protein product. A directed edge denotes the transcriptional regulatory interac-
tion, while an undirected edge denotes a PPI, sequence homology or correlated
expression. (a) Frequently identified motifs in transcriptional regulatory networks
are FFLs, SIMs, and DORs (Shen-Orr et al., 2002). (b) Two- and three-node
motifs identified in an integrated network of PPIs and transcriptional regulations
(Yeger-Lotem et al., 2004). (c) Three representative motif themes extracted from
an integrated network (Zhang et al., 2005).



266 KNOWLEDGE-BASED BIOINFORMATICS

Zhang et al. reported three- and four-node motifs in an integrated S. cerevisiae
network of multiple interaction types, including PPIs, genetic interactions, tran-
scriptional regulations, sequence homology and expression correlation (Zhang
et al., 2005). In addition, the authors defined network themes as family-like
patterns that encompass multiple motifs of the same type, and found several net-
work themes, such as the ‘feed-forward’ theme, the ‘co-pointing’ theme, and the
‘regulonic complex’ theme (Figure 11.3 (c)). The ‘feed-forward’ theme or the
‘co-pointing’ theme each contains multiple FFLs or ‘co-pointing’ motifs, respec-
tively. The ‘regulonic complex’ theme differs from the ‘co-pointing’ theme in
that the regulated proteins in the motif theme frequently interact with one another.
These network themes are related to specific biological processes. For example,
in nucleus, histone is responsible for the packaging of the newly synthesized
DNA into structural units called nucleosomes. The six components (Hhf1, Hfh2,
Hht1, Hht2, Hta1 and Hta2) in the histone octamer are co-expressed and regu-
lated by two TFs (Hir1 and Hir2), and together they form a ‘regulonic complex’
theme (Figure 11.3 (c)). These network themes may also represent fundamental
building blocks of networks.

11.3.2.3 Motif changes between static and dynamic networks

The application of motif analysis introduced above was all based on static
conglomerate networks, where all interactions are assembled into a network
regardless of the contexts or conditions in which the interactions take place.
For motifs identified in static conglomerate networks, the interactions within the
same motif may actually correspond to different contexts, thereby creating errors.
To address this issue, Luscombe et al. applied motif analysis on five dynamic
yeast transcriptional regulatory networks corresponding to three endogenous and
two exogenous conditions, and found that different motifs are enriched in net-
works of different conditions (Luscombe et al., 2004). For example, SIMs occur
much more frequently in the sub-networks under exogenous conditions than under
endogenous conditions, while FFLs are more favored in endogenous conditions.
This observation is possibly due to the different functional roles of SIMs and
FFLs: exogenously enriched SIMs sense the exogenous stimuli and transmit the
signal into the cell to induce a wide change of gene expressions, while endoge-
nously favored FFLs are able to sense the persistent input endogenous signal
(Luscombe et al., 2004).

11.3.3 Challenges and future directions of motif analysis

Although experiments in living cells as well as computational models have
helped to determine the functions of some motifs, only a small fraction of motifs
have determined functions and many more motifs remain to be characterized.
In addition, many computationally predicted motifs need further experimental
verifications in different systems (Albert and Albert, 2004). Another limitation
that hinders the study of network motifs is the incompleteness and errors in
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large-scale networks. As the networks become better characterized, more and
more new motifs will be identified and functions of these motifs will be assigned.
Currently, the investigations of network motifs at levels of signaling and regula-
tion have just begun and much work needs to be done in the future.

11.4 Network modular analysis and applications

Scale-free molecular networks are composed of modular structures (Hartwell et
al., 1999). A functional module in a molecular network is commonly defined as
a group of molecules and interactions that together constitute a functional unit
and perform a specific function (Hartwell et al., 1999; Eisenberg et al., 2000).
In a molecular network, functional modules are widely believed to correspond
to densely connected sub-network structures that are relatively isolated from the
rest of the network (Figure 11.4; Barabasi and Oltvai, 2004; Palla et al., 2005;
Girvan and Newman, 2002). Recently, researchers have extensively studied the
extraction and properties of functional modules from medium- and large-scale
molecular networks, including PPI networks, regulatory networks and metabolic
networks, mainly through network clustering, or modular analysis (Guimera and
Nunes Amaral, 2005; Chen and Yuan, 2006; Palla et al., 2005; Rives and Galit-
ski, 2003). Using modular analysis, the topological and functional properties of
community-like sub-network structures have been revealed. Together with func-
tional annotations and genomic data, the analysis of extracted modules facilitates
the prediction of protein functions, and the discovery of novel biomarkers, as
well as the identification of novel drug targets.

Figure 11.4 Modular structures in a PPI network. In the network, each node
represents a protein and each edge represents a physical interaction. Three densely
connected regions in the network are denoted as three modules.

In order to extract modular structures from medium- and large-scale molec-
ular networks, for example PPI networks, various graph clustering approaches
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are adopted. These clustering methods can be categorized into four groups based
on the underlying methodology: density-based, partition-based, centrality-based,
and hierarchical clustering methods. In addition to the four main categories of
clustering algorithms, a number of other clustering approaches exist, such as
spectral clustering methods (Bu et al., 2003) and the dynamic signal transduc-
tion system (STM) algorithm that simulates a signal transduction model (Hwang
et al., 2006). The input of the module extraction methods can be a homogeneous
molecular network, or a network integrated with other genomic data such as
gene expression. These network clustering algorithms may have different objec-
tives, such as detecting functional units, or molecular complexes, or signaling
pathways, or other defined sub-network structures (Sharan et al., 2007).

11.4.1 Density-based clustering methods

A density-based clustering approach searches for densely connected sub-network
structures, such as fully connected subgraphs, or cliques, in a network. The sim-
plest and most straightforward density-based clustering method is the exhaustive
clique enumeration, as introduced by Spirin and Mirny (Spirin and Mirny, 2003).
The authors applied three different clustering methods, including a clique enu-
meration method, a superparamagnetic clustering method, and a Monte Carlo
procedure optimization method on a PPI network from the MIPS database (Spirin
and Mirny, 2003; Mewes et al., 2002). Despite using an exhaustive search, the
clique enumeration method is still efficient in PPI networks because PPI networks
are very sparse. In addition, to enumerate cliques of n nodes, the method only
needs to start from those cliques with n − 1 nodes, because any non-clique with
n − 1 nodes cannot form a clique of n nodes (Spirin and Mirny, 2003).

The clique enumeration is overly stringent as it ignores many densely con-
nected components other than cliques; some of these ignored components may
well correspond to functional modules. To overcome this limitation, Palla et al.
proposed a clustering method that extracts k-clique communities relaxed from
cliques in multiple networks, including a social network, a word association net-
work, and a small-scale PPI network (Palla et al., 2005). Specifically, being less
stringent than cliques, a k-clique community is a union of all k-cliques (com-
plete subgraphs of size k) that share k − 1 nodes. k-clique community clusters
allow overlaps, which makes the method appropriate for large-scale molecu-
lar networks because functional modules may have overlaps. This method was
extended in further studies and implemented as the CFinder software (Zhang
et al., 2006a; Adamcsek et al., 2006; http://angel.elte.hu/clustering).

Further relaxing the connectivity requirement of modules, Altaf-Ul-Amin
et al. proposed another density-based clustering approach and applied their
method on two large-scale PPI networks of S. cerevisiae and E. coli to extract
protein complexes (Altaf-Ul-Amin et al., 2006). Starting with single nodes, this
algorithm iteratively adds one node to a cluster, and evaluates the connectivity
between the newly added node and original nodes in the cluster, defined as the
cluster property of the node, as well as the connectivity density of the newly
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formed cluster. Clusters grow node-by-node when both cluster property and
density values are above certain thresholds.

Functional modules may frequently overlap with one another because they
should bind together to accomplish certain biological processes, especially in
signaling pathways (Zotenko et al., 2006). Based on this idea, Zotenko et al.
introduced a tree representation of complexes to mimic the transduction of signals
(Zotenko et al., 2006). Each node in the tree, which corresponds to a functional
unit, is a clique of nodes in a modified chordal graph from the original network.
According to graph theory, a chord is an edge that connects two non-connecting
nodes of a cycle, and a chordal graph is a graph that does not contain chordless
cycles of three or more edges. The authors applied this method to two signaling
pathways and explained the functional roles of each module as a clique in the
chordal graph.

In summary, a density-based clustering method captures densely connected,
possibly overlapping, modular structures in networks. One limitation of density-
based methods is the coverage. Because a density-based method does not partition
the whole network, the modules extracted may constitute only a portion of the
whole network, and other parts of the network, where none of their subcompo-
nents meets the density requirement, are ignored.

11.4.2 Partition-based clustering methods

Partition-based clustering methods seek to explore a partition of a whole network
by optimizing certain cost functions. For example, the Restricted Neighborhood
Search Clustering (RNSC) algorithm partitions the node set of a network into
clusters based on a cost function (King et al., 2004). Starting with a random
partition, the method iteratively reassigns the nodes on the border of one cluster
to an adjacent cluster, and seeks to minimize the total cost of the partition by
evaluating the cost function. The resulting clusters are then filtered based on addi-
tional parameters such as size, density and functional homogeneity. The authors
applied RNSC on seven large-scale PPI networks of three different organisms, and
extracted meaningful clusters corresponding to known protein complexes. One
limitation of this method is that the number of clusters needs to be predefined
while the true number is usually unknown.

Guimera and Nunes Amaral adopted a simulated annealing-based clustering
method by optimizing a modularity score (Guimera and Nunes Amaral, 2005).
Specifically, the modularity M of a network is defined as

M =
∑N
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(
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L
−

(
ks

2L

)2
)

,

where N is the number of modules, L is the total number of edges in the network,
ls is the number of edges within module s, and ks is the sum of the degrees of
the nodes in modules (Guimera and Nunes Amaral, 2005). The meaning of the
modularity score is that a good partition of a network should comprise as many
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within-module links and as few between-module links as possible, while the
modularity should be zero when all nodes in a network are put in the same cluster.
Using their method to extract modules from 12 complex metabolic networks, the
authors classified nodes into universal roles based on their pattern of intra- and
inter-module connectivities.

The advantage of partition-based methods, compared with density-based
methods, is that all nodes in a network are assigned into certain clusters. One
limitation is that optimizing a scoring function by exhaustive or heuristic search
may be computationally complex. Partitioning the network may also lose the
overlapping part of functional modules.

11.4.3 Centrality-based clustering methods

Another group of network clustering algorithms is based on centrality measures.
For example, the edge betweenness centrality measures the number of the short-
est paths that go through an edge, and edges with high betweenness scores denote
bridge-like connectors for communication between two groups of nodes in a net-
work (Girvan and Newman, 2002; Yu et al., 2007). Girvan and Newman proposed
an edge-betweenness-based clustering method, which takes a whole network as
the input, and iteratively removes an edge with the highest betweenness value
(Girvan and Newman, 2002). Given a percentage of edge removal, the network
is detached into a number of clusters. When using different percentages, the
resulting clusters form a hierarchical structure. This algorithm was applied on
several networks of known structures, and the results showed a high degree of
agreement with known clusters (Girvan and Newman, 2002). An implementation
of this algorithm using Java Universal Network/Graph Framework (JUNG) is
available (http://jung.sourceforge.net/).

Dunn et al. applied the edge-betweenness clustering method and investigated
functional modules in four large-scale PPI networks from high-throughput exper-
iments (Girvan and Newman, 2002; Lehner and Fraser, 2004; Uetz et al., 2000;
Ito et al., 2001; Dunn et al., 2005). In addition, they found that the extracted
clusters were generally robust to false interactions in the PPI networks (Dunn
et al., 2005). Chen and Yuan extended the edge-betweenness-based method to
cluster a yeast interactome network with weighted edges, where the edge weight
represented the dissimilarity between gene expressions of corresponding proteins
(Chen and Yuan, 2006).

In a recent study, Missiuro et al. proposed a novel centrality measure called
information flow score in interactome networks (Missiuro et al., 2009). The infor-
mation flow score simulates the current flow on each node and edge in the
circuit representation of an interactome network, and nodes and edges with high
scores represent centralities of the network. A similar clustering method to the
edge-betweenness clustering was designed to partition the network by iteratively
removing an edge with the highest information flow centrality measure.

The centrality-based methods are computationally feasible for interactome
networks and rather robust to errors and incompleteness in the networks.
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Current centrality-based methods do not uncover overlapping modules. Although
the resulting clusters form a hierarchy, the centrality-based methods differ
from hierarchical clustering algorithms in that they do not use a pair-wise
similarity/distance measure between node pairs.

11.4.4 Hierarchical clustering methods

An appropriate similarity/distance measure is the key for hierarchical cluster-
ing. When clustering a network, an intuitive distance measure is the pair-wise
distance between node pairs. Rives and Galitski assumed that nodes within a
module are likely to have the shortest path length profiles (Rives and Galitski,
2003). A hierarchical agglomerate average-linkage algorithm was used to cluster
an all-pair-shortest-path matrix, where each value is 1/d2, and d is the short-
est path distance between two nodes. The authors applied this method on small
networks such as a yeast nuclear-protein network and a yeast regulatory net-
work of filamentation, and extracted meaningful functional modules (Rives and
Galitski, 2003).

A drawback of using the shortest path lengths directly as the distance measure
is the problem of ties-in-proximity when distances between many node pairs
are identical (Arnau et al., 2005). To overcome this issue, Arnau et al. used a
secondary similarity matrix converted from the direct shortest path length matrix.
This matrix measures the probability that two nodes are clustered together using
the direct distance matrix when ties-in-proximity occur. The authors applied this
algorithm on several small- and medium-sized PPI networks, and extracted higher
quality modules compared with those extracted using the direct distance matrix.
The authors also provided an implementation of the method called UVCLUSTER.

Samanta and Liang used statistical significance of common interaction part-
ners between node pairs compared with random networks as the similarity mea-
sure, and applied hierarchical clustering to cluster a yeast interactome from DIP
into modules (Xenarios et al., 2002; Samanta and Liang, 2003). The modules
extracted were generally homogeneous in functions. In addition, 50% randomly
generated interactions were added to the PPI network, and the algorithm was
able to identify almost all of the original modules, indicating the robustness of
the method against false interactions.

Brun et al. proposed a Czekanovski-Dice distance measure for hierarchical
clustering based on the number of interacting partners shared by a node pair, and
applied the algorithm to a medium-scale yeast PPI network to extract functional
modules (Brun et al., 2004). Based on the annotations of the modules, the authors
assigned functions to previously uncharacterized yeast proteins.

Hierarchical clustering methods generate a hierarchy of clusters and are
suitable for large-scale molecular networks. There are two limitations of
hierarchical network clustering: First, different clustering parameters such as
linkage methods and similarity cutoffs usually result in different output modules.
Second, most hierarchical clustering methods cannot uncover overlapping
modules in molecular networks.
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11.4.5 Applications of modular analysis

Currently identified modules from large-scale networks, especially PPI networks,
are often used to predict unknown protein functions by assigning the overrep-
resented functions of a module based on function enrichment analysis to its
protein members. Another application of modular analysis is the identification of
module-based prognostic biomarkers for diseases such as breast cancer.

11.4.5.1 Protein function prediction using modular approaches

A major application of network clustering and module identification is to assist
protein function prediction. Despite obvious discrepancies among various module
extraction methods, methods for predicting unknown protein functions based on
identified modules and known functional annotations such as Gene Ontology
(GO) or Saccharomyces Genome Database (SGD) annotations (Ashburner et al.,
2000; Cherry et al., 1998) are largely the same. A commonly used straightforward
method is to assign each function that is shared by the majority or proteins/genes
in a module to every protein/gene in the same module. Each of the assigned
functions is also considered as a function of the whole module. Alternatively, a
hypergeometric enrichment p-value can be computed for each function:

p =
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where n is the number of nodes in the whole network, j is the number of
nodes in the network annotated with the function and m is the module size.
This statistical test is identical to the corresponding one-tailed Fisher’s exact
test. Given a threshold for p-value, the significantly overrepresented functions
are then predicted for all proteins/genes in the module.

Modular approaches contribute greatly to protein function annotations. For
example, Bu et al. assigned annotations to 76 uncharacterized proteins in yeast
based on 48 quasi-clique-structured modules extracted by their spectral cluster-
ing method, with each module assigned at least one specific function from MIPS
annotations (Bu et al., 2003; Mewes et al., 2002). Brun et al. proposed new
annotations for 37 previously uncharacterized yeast proteins based on 126 mod-
ules extracted by their clustering method, and GO annotations from the Yeast
Protein Database (YPD), and Saccharomyces Genome Database (SGD) (Brun
et al., 2004; Cherry et al., 1998; Costanzo et al., 2000). In another example, King
et al. partitioned a yeast PPI network and annotated 81 proteins in yeast based
on identified modules and SGD annotations (King et al., 2004). With the contin-
uous development of more advanced clustering methods for functional module
extraction as well as further efforts on molecular data collection, uncharacterized
protein function predictions will be accelerated to facilitate further experimental
determinations of protein functions.



MOLECULAR NETWORK ANALYSIS AND APPLICATIONS 273

11.4.5.2 Biomarker discovery using modular analysis

Functional modules are functional units in molecular systems by definition
(Hartwell et al., 1999; Eisenberg et al., 2000). Integrative analysis of modules
from molecular networks with disease-related genes may help elucidate the
underlying mechanisms and facilitate the biomarker discovery of a disease.
For example, combining modular analysis on large-scale human PPI networks
with genomic data, a recent study identified novel modular biomarkers
for human breast cancer metastasis that better predict the disease outcome
(Chuang et al., 2007).

To predict breast cancer metastasis potential, Chuang et al. identified mod-
ular biomarkers that can distinguish the samples of patients who developed
metastasis after surgery from those who did not (Chuang et al., 2007; Auffray,
2007). The authors selected the sub-networks by first overlaying differentially
expressed genes in breast cancer tumor samples onto an assembled human PPI
network, followed by calculating an activity score for sub-networks/modules in all
patient samples. They then assessed the predictive power of modules by comput-
ing Mutual Information between activity scores and sample metastasis potential
(Auffray, 2007; Chuang et al., 2007). The obtained modular biomarkers achieved
a better predictive accuracy as well as higher reproducibility on different groups
of breast cancer samples, compared with individual gene biomarkers from pre-
vious gene expression profiling studies (Chuang et al., 2007; van ’t Veer et al.,
2002; Wang et al., 2005). Consistent with functional modules, the identified mod-
ular biomarkers are significantly enriched in common biological processes, which
may provide further insights into the mechanisms of breast cancer metastasis.

11.4.6 Challenges and future directions of modular analysis

Although numerous clustering methods have been proposed to extract functional
modules from molecular networks, the validation of the resulting modules is often
insufficient. Functional enrichment analysis of members in modules is commonly
conducted to provide validation for identified modules. However, sub-networks
enriched in certain functions do not necessarily correspond to functional modules.
Another limitation of the current modular analysis is that little systematic evalu-
ation is done to compare various clustering algorithms. So far, only one quanti-
tative evaluation of four clustering algorithms has been done using a test graph
composed of 220 known protein complexes (Brohee and van Helden, 2006).

Another limitation of current modular analysis is the network itself. First,
the incompleteness and errors in large-scale networks poses a great challenge
to modular analysis. Although some studies used false interactions in the
networks to show the robustness of their methods (as in Girvan and Newman,
2002; Arnau et al., 2005; Chen and Yuan, 2006), the modules extracted from
networks with false interactions were not exactly compatible with those from
the original networks; that is, the members between corresponding modules
were somewhat different. Second, the results of modular analysis based on
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dynamic networks may differ from those of static networks, because the same
nodes may participate in different functional units under different conditions.
For example, overlaying time-specific gene expression data onto yeast cell
cycle protein interactions, de Lichtenberg et al. reported dynamic variations
of protein complexes during the yeast cell cycle based on a time-dependent
interaction network (de Lichtenberg et al., 2005). To overcome this limitation,
the networks on which the modular analysis is applied need to contain fewer
false interactions and have a higher coverage, as well as to be better annotated
about the contexts in which the interactions take place. This requires further
efforts on both experimental techniques and computational methods.

In contrast with the traditional methodology for drug target discovery, where
single molecules are often selected as potential drug targets, recently proposed
network-based strategy, or network pharmacology, suggests that targeting a small
group of molecules may be more effective against complex diseases (Hopkins,
2007; Hopkins, 2008). Although currently identified potential multi-gene drug
targets, such as ‘gang of four’ in breast cancer metastasis (Eltarhouny et al.,
2008; Gupta et al., 2007), do not necessarily correspond to members in the same
functional modules, genes/proteins in the same modules may potentially play a
role in multi-gene drug target discovery.

11.5 Network comparison

Molecular network comparison is another important aspect of understanding
molecular systems by comparative research across various molecular networks,
such as transcriptional regulatory networks, PPI networks, and signaling
pathways.

11.5.1 Network comparison algorithms:
from computer science to systems biology

Molecular network comparison is an extension from ‘graph matching’ algorithms
in computer science (Conte et al., 2004). Generally, a graph is defined as G(V, E)

where V is a set of nodes, E is a set of edges. The classic graph matching
problem seeks a mapping function for nodes f(a) = b between two graphs, a data
graph GD(VD, ED) and a model graph GM(VM, EM). If such a mapping function
exists, this mapping is called an isomorphism, or exact graph matching (Conte
et al., 2004). As we expect, for molecular networks such as PPI networks, exact
graph matching is overly stringent and does not allow any mismatching or error
in the data. In contrast, the more relaxed inexact graph matching uses a mapping
function to maximize a matching score function (or equivalently, to minimize an
error function), and seeks a best match instead of the perfect match between two
graphs by optimization (Conte et al., 2004). For current large-scale molecular
networks that are error-prone (Yu et al., 2008; von Mering et al., 2002), the
graph matching algorithms need to be both efficient and fault-tolerant (Sharan
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and Ideker, 2006). Therefore, inexact graph matching algorithms are dominant
in matching molecular networks.

The algorithm complexity poses another challenge for extending and applying
graph matching algorithms to large-scale molecular networks. Unlike the DNA
sequence matching problem, which can be efficiently solved in polynomial time
using dynamic programming or BLAST (Altschul et al., 1997), matching graphs
can be a very difficult problem, even NP-hard (Conte et al., 2004), which means
there is not yet any polynomial time algorithm to solve it. In theoretical computer
science, finding the optimal mapping between two graphs is a classic problem
called the ‘Maximum Common Subgraph’ (MCS) problem, which is unfortu-
nately NP-hard. Due to the large scale of various molecular networks, applying
optimal mapping algorithms is unpractical, thus more efficient algorithms are
required. Accommodating the computational complexity and the precision of
the result leads to approximate inexact algorithms, which can obtain a good
enough local optimal matching result heuristically and probabilistically within
an acceptable computing time. This category of algorithms is the most suitable
for matching molecular networks.

11.5.2 Network comparison algorithms
for molecular networks

In molecular network analysis, graph matching problems are more commonly
referred to as network comparison. The above-mentioned approximate inex-
act graph matching algorithms have been extended and applied on molecular
networks to extract biologically meaningful matches. Three of the most repre-
sentative network comparison algorithms are briefly reviewed as follows.

11.5.2.1 PathBLAST

The progress made in sequence matching has inspired a network comparison
algorithm called PathBLAST (Kelley et al., 2003). PathBLAST looks for the
maximally conserved interaction pathway across networks (Figure 11.5). The
conserved pathways are formulated as high-scoring paths by a scoring function
in the alignment graph:

S(P ) =
∑
v∈P

log10
p(v)

prandom

+
∑
e∈P

log10
q(e)

qrandom

,

where S(P ) is a log probability score, which is a combination of sequence
similarity and the likelihood that a PPI edge is true. The graph matching problem
models the matching process with ‘gap matching’ (allowing a null vertex) and
‘mismatching’ (allowing one fault vertex matching) to make it fault tolerant and
get a larger subgraph which can in return bring more insights to the biological
process. Using PathBLAST, the authors found that the PPI networks of distantly
related species, for instance S. cerevisiae and Helicobacter pylori , actually share a
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Figure 11.5 Illustration of PathBLAST. Each circle denotes a protein. For the
two PPI paths (PPI Path 1 and 2, above) taken from two different PPI networks,
PathBLAST will find the optimal matching path, which is the bottom ‘PathBLAST’
path, allowing three types of matching (direct, gap, and mismatch) in the Path-
BLAST (Kelley et al., 2003).

large complement of evolutionarily conserved pathways, and that many pathways
appear to have been duplicated and specialized within yeast (Kelley et al., 2003).

11.5.2.2 Ogata’s linear path algorithm

The work by Ogata and colleagues is a classic heuristic search algorithm (Ogata
et al., 2000). The method searches for correspondences between the reactions
of specific metabolic pathways and the genomic locations of the genes encoding
the enzymes catalyzing those reactions. Their network alignment graph combines
the genome ordering information, represented as a network of genes arranged in
a linear (or circular) path, with a network of successive enzymes in metabolic
pathways. Single-linkage clustering was applied to this graph to identify pathways
for which the enzymes are clustered along the genome (Ogata et al., 2000).

11.5.2.3 IsoRank, IsoRank-Nibble

The previous two algorithms simplify the graph matching as sequence searching
without considering the global topological structure of a network. Recent suc-
cessful research in large-scale internet link analysis has also promoted the trend
towards PageRank-like algorithms: IsoRank (Singh et al., 2008) and IsoRank-
Nibble (Liao et al., 2009).

IsoRank constructs a scoring function to map all nodes between two networks,
which is similar to PageRank’s stochastic Google matrix (Singh et al., 2008).
Based on this function, an iterative procedure is performed by multiplying the
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matrix with the matching score vector. The algorithm converges within less than
100 iterations to a global optimum of the node mapping, which turns out to
be the eigenvector of a linear equation system. After obtaining the mapping
between two networks, a greedy matching is finally performed for constructing a
mapping across multiple networks. IsoRank-Nibble improves the final matching
stage in IsoRank by utilizing spectral clustering and achieves a higher accuracy
in validations compared with IsoRank (Liao et al., 2009).

11.5.3 Applications of molecular network comparison

There are three major applications for molecular network comparisons: network
alignment, network integration, and network query; underlying all three of them
is a graph matching algorithm. In these applications, both pair-wise and multiple
network comparisons can be studied.

11.5.3.1 Network alignment

Network alignment is the process of globally comparing two networks of the
same type, identifying regions of similarity and dissimilarity (Kelley et al., 2003).
The biological significance of finding conserved paths or conserved clusters is
that they are likely to represent functional modules throughout the biological
evolutionary process. Network alignment can be considered as the most important
application of network comparisons, because it denotes the matching procedures
that can connect nodes between different networks.

As an example of network alignment, PathBLAST identified five regions
that were conserved across the protein networks of S. cerevisiae and H. pylori
(Kelley et al., 2003). This comparison was later extended to detect conserved
protein clusters rather than paths, employing a likelihood-based scoring scheme
that weighs the denseness of a given sub-network versus the chance of observing
such topology at random (Kelley et al., 2003). PathBLAST has recently been
extended to perform a three-way prediction of thousands of new protein functions
for yeast, worm, and fruit fly, with an estimated success rate of 58–63% across
multiple networks (Sharan et al., 2005).

Similarly, using IsoRank, a global alignment of PPI networks of five species
(yeast, worm, fruit fly, mouse, and human) has been computed (Singh et al.,
2008). In addition, incorporating PPI data with sequence BLAST scores from
ortholog predictions, IsoRank improves the protein alignment results between the
yeast and fly networks over those from the existing sequence-based alignment
approaches (Singh et al., 2008).

11.5.3.2 Network integration

One type of network represents one aspect of a molecular system. Thus,
integrating multiple types of networks may provide a more comprehensive
and multi-view insight for the molecular system (Sharan and Ideker, 2006).
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A fundamental problem is to identify in the merged network functional modules
that are supported by interactions of multiple types.

An example of network integration of heterogeneous molecular networks is
shown in Kelley and Ideker (2005). Integrating PPIs and genetic interactions
(synthetic lethal) in yeast, interrelations between these two networks have been
studied. Two structures in the integrated network are found: pairs of sub-networks
of PPIs interconnected to each other by a dense pattern of genetic interactions; and
clusters enriched for both physical and genetic interactions. The first structure was
found to be more prevalent, suggesting that genetic interactions tend to bridge
genes operating in two pathways with redundant or complementary functions,
rather than occurring between protein subunits within a single pathway.

11.5.3.3 Network querying

Network querying allows researchers to submit a subgraph as a query, and the
algorithm will search against a larger whole network and find the best matching
parts. A typical Web server is also set up for querying networks across species
to identify evolutionarily conserved patterns which will lead to revealing more
biologically significant discoveries (Kelley et al., 2003).

Two tools for network querying are the PathBLAST Web server (Kelley
et al., 2003) and MetaPathwayHunter (Pinter et al., 2005). PathBLAST can also
be utilized to identify all matches to the query in the network under study (Pinter
et al., 2005). As in the network comparison, the treatment here is only in queries
that take the form of a linear path of interacting proteins. The MetaPathwayHunter
algorithm is devised for metabolic networks (Pinter et al., 2005). It finds and
reports all approximate occurrences of the query in the collection, ranked by
similarity and statistical significance.

11.5.4 Challenges and future directions
of network comparison

Research on molecular network comparison is still a young field that dates
back only about one decade (Sharan and Ideker, 2006). The challenges and
future directions in the current research of molecular network comparison are
in three aspects. First, the scale of molecular networks poses a computational
challenge. Due to the size of molecular networks that scale to about 105, more
efficient algorithms are generally required. For example, IsoRank requires about
O(N4) which is still too complex to be scalable for genome-scale networks.
Time-sensitive applications like network querying need efficient algorithms. Sec-
ond, more efforts are expected for the comparison of multiple networks. Cur-
rently most algorithms are based on pair-wise network comparison. In most
algorithmic settings, each network is modeled as a graph, and thus how to
combine the knowledge of each graph together towards a more comprehensive
understanding of the biological evidence remains a challenge. Third, further
development of novel strategies and theoretical frameworks is in needed to filter,
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interpret, and organize interaction data into models of cellular function (Sharan
and Ideker, 2006).

11.6 Network analysis software and tools

To facilitate the study of molecular networks, especially large-scale networks,
a number of software applications for network analysis and visualization,
or network tools, have been developed. In this section, we comparatively
summarize the main functionalities of several network tools commonly used
by the research community of systems biology, with a focus on their relative
advantages with respect to visualization and each of the four network analyses
(topology, motif, modular analyses and network comparison) discussed in the
previous sections (Table 11.2).

11.7 Summary

Molecular networks form the foundation of contemporary systems biology. High-
throughput experiments as well as computational predictions have generated a
huge amount of molecular data representable by networks, posing challenges
for the extraction of biologically meaningful and useful information. Algorithms
and methodologies originating from mathematics and computer science have
been adapted and extended to analyze these molecular networks, with respect
to topology, motifs, modules and network comparison, as discussed above. The
extracted information and learned knowledge are then applied on specific bio-
logical/medical problems of interest, such as the identification of prognostic
biomarkers of breast cancer metastasis (Chuang et al., 2007), target selection
for structural genomics (Huang et al., 2008), and network-based drug target dis-
covery (network pharmacology) (Hopkins, 2007; Hopkins, 2008), to facilitate the
understanding of the underlying mechanisms of biological systems and benefit
the health care of human beings.

Three challenges universally exist in different types of network analyses due
to the data used to construct various networks. First, current molecular networks
are still largely incomplete and error-prone (Yu et al., 2008; von Mering et al.,
2002). This challenge requires the development of more advanced experimental
techniques to generate large amounts of data of high accuracy, as well as the
advance of computational methods with a decent learning ability or predictive
power. In addition, expert curations can always help to refine the resulting net-
works. Second, network analysis results of previous studies are mainly based on
static conglomerate networks by combining all available interactions. However,
recent studies on network dynamics show that the analysis results are gener-
ally different between static conglomerate networks and dynamic networks of
specific contexts with respect to network statistics, important nodes and net-
work motifs (Luscombe et al., 2004; Han et al., 2004; Zhang et al., 2006b).
Therefore, in the future it is important to understand which interaction is under
which context in a conglomerate network (Xia et al., 2004). Finally, although
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Table 11.2 Summary and comparison of network tools.

Network tool Pajek (Batagelj
and Mrvar,
2008)

Cytoscape
(Shannon
et al., 2003)

tYNA (Yip
et al., 2006)

JUNG
(O’Madadhain
et al., 2003)

Main purpose Visualization Visualization
and analysis

Visualization
and analysis

Visualization
and analysis

Visualization
(layout and
scalability)

Multiple
layouts: e.g.,
3D layout;
good scalability
(scalable to
networks of
thousands of
nodes)

Various
layouts: e.g.,
organic,
circular, yfiles;
scalable to
genome-scale
networks

Single layout;
more layouts
with SVG
viewer; good
scalability

Various
layouts; good
scalability

Topology
analysis

N/A By plug-ins:
e.g., tYNA
plug-in

Direct; major
network
statisticsa as
well as
eccentricity and
betweenness
included

Major network
statistics as
well as
eccentricity and
betweenness
included

Motif analysis N/A By plug-ins:
e.g., Netmatch
plug-in

Chain, cycle,
FFL motifs
identifiable

N/A

Modular
analysis

Networks can
be decomposed
into clusters

By plug-ins:
e.g., ClusterViz
plug-in that
uses multiple
clustering
methods

N/A Multiple
clustering
algorithms
implemented

Network
comparison

N/A Basic logic
operationsb; by
plug-ins

Basic logic
operations;
filtering based
on network
statistics

N/A

System and
compatibility

Standalonec;
Linux/Win

Standalone;
Linux/Mac/Win

Web-server Java package

URL http://vlado.
fmf.uni-lj.si/
pub/networks/
pajek/

www.
cytoscape.org/

http://tyna.
gersteinlab.
org/tyna/

http://jung.
sourceforge.net/

aMajor network statistics include at least the calculations of degree, clustering coefficient,
and shortest path length.
bBasic logic operations include the union, intersection, and difference of two or more
networks.
cFor standalone software, the operating system compatibility for Windows, MacOS, or
Linux is denoted as Win, Mac, or Linux, respectively.
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Table 11.2 Summary and comparison of network tools (continued).

Network tool N-Browse
(Kao and
Gunsalus,
2008)

Osprey
(Breitkreutz
et al., 2003)

NeAT
(Brohee
et al., 2008)

PINA (Wu
et al., 2009)

VisANT
(Hu et al.,
2009)

Main purpose Visualization Visualization Visualization
and analysis

Visualization
and analysis

Visualization
and analysis

Visualization
(layout and
scalability)

Multiple
layouts: e.g.,
interactive
dynamic
spring
layout;
moderate
scalability

Multiple
layouts;
scalable to
genome-
scale
networks

Several
layouts;
scalable to
genome-
scale
networks

Multiple
layouts; good
scalability

Multiple
layouts;
scalable to
genome-scale
networks

Topology
analysis

N/A N/A Direct; major
network
statistics
included

Direct; major
network
statistics
included;
important
nodes of
centrality
identifiable

Direct; major
network
statistics
included;
hubs and
bottlenecks
identifiable

Motif analysis N/A N/A N/A N/A FFL motifs
identifiable

Modular
analysis

N/A N/A Multiple
clustering
algorithms
implemented:
e.g., MCL
(Enright et
al., 2002) and
RNSC (King
et al., 2004)

N/A Network
Module
Enrichment
Analysis
implemented

Network
comparison

Basic logic
operations

N/A Comparisons
of large-scale
networks with
statistical
significance

N/A N/A

System and
compatibility

Web-server Standalone;
Linux/Mac/
Win

Web-server Web-server Web-server
and
standalone

URL www.
gnetbrowse.
org/

http://biodata.
mshri.on.
ca/osprey/

http://rsat.
ulb.ac.be/
rsat/index_
neat.html

http://csbi.
ltdk.helsinki.
fi/pina/

http://visant.
bu.edu/
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data integration has become one of the main themes of contemporary systems
biology, how to represent, analyze and understand genome-scale integrated net-
works consisting of various types of available molecular data remains a challenge.
To overcome this challenge is the ultimate goal of network and systems biol-
ogy (Barabasi and Oltvai, 2004). However, the current edge representation is
inconsistent and inadequate to accurately convey all the information in various
networks. Therefore, a standardized and well-defined edge ontology is urgently
needed in order to achieve this ultimate goal (Lu et al., 2007).

Network biology is a very young and promising field. Although the major
advances in each type of network analysis and applications have just taken place
in recent years, network biology has already changed the conventional ways of
studying biological systems by shifting the focus from single molecules to a
system-level view. The network approaches have just proven useful in various
practical aspects such as target identification in structural genomics, prognostic
biomarker discovery, and network pharmacology, and much work remains to be
done in the near future.
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Biological pathway analysis:
an overview of Reactome and
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12.1 Biological pathway analysis and pathway
knowledge bases

A biological pathway is an ordered series of molecular events that results in a
new molecular product, or a change in a cellular state or process. For example,
metabolic and signaling pathway databases contain experimental data and infor-
mation relating to genes, gene products, and small molecules. A major chal-
lenge for biologists, clinicians, and bioinformaticians is the integration of new
experimental and computational results with previous knowledge about specific
biological pathways.

Pathway Knowledge Bases (PKBs) are annotated collections of data assem-
bled to achieve that integration. The knowledge required for such high-level
conceptual integration comes from analysis by human curators and experts,
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working from primary research articles and reviews in the published literature.
It is not yet possible to accurately and reliably perform such analyses by com-
putational approaches alone, although emerging tools, such as Semantic Web
technologies, may allow such computational analysis in the future. We therefore
distinguish between biological ‘databases’ and ‘knowledge bases’ by the inclu-
sion of human curation in knowledge bases, whereas large databases can be, and
often are, created by purely computational methods.

Pathway knowledge bases, such as Reactome and the others reviewed here,
are Web applications that provide custom interfaces to online data resources.
These resources consist of data repositories and data analysis tools, as well as
highly specialized data visualization tools. As a result, these integrative pathway
knowledge bases are built using the same Web technologies that are used now
to create custom ‘Web portals’ and ‘data mashups’ in ‘Web 2.0’ applications. In
addition, these different pathway Web tools are now starting to provide further
integration, by accessing each other’s data, via specific ‘Web services APIs’
(Application Programming Interfaces). For example, the human-curated pathway
data provided by Reactome is now used by multiple other pathway knowledge
bases, including NCBI-BioSystems and NCI-PID, and plans are underway to
integrate data and analysis results from other pathway tools into Reactome.

The authors of this review are all members of the Reactome project, and we
therefore focus on Reactome. In particular, we provide a detailed use case for
pathway data analysis with Reactome. We also give brief overviews of several
closely related knowledge bases, pointing out some of the differences in the data
models used, and the different types of information integrated in these various
pathway knowledge bases.

12.2 Overview of high-throughput data capture
technologies and data repositories

The four ‘omes’: genome, transcriptome, proteome, and metabolome reflect major
areas of biological and clinical research that forms the framework of systems
biology. Over the last decade, the rapid advances in genomic, proteomic, and
metabolomic data capture technologies have changed the way that biologists,
life scientists and clinicians study cellular processes by generating thousands or
millions of individual data points representing gene sequences, mRNA or protein
expression levels, or metabolite levels. Although this data can now be generated
relatively easily and rapidly, there is a critical need for powerful tools to aid
in the organization, interpretation, and analysis of these primary data sets, thus
hindering the capacity for discovery.

Historically, the original DNA, RNA and protein sequences databases hosted
by NCBI (Sayers et al., 2009), EBI (Brooksbank et al., 2010) and DDBJ (Sug-
awara et al., 2009) provided the first large data warehouses of biological informa-
tion. These repositories provide the life science community with the ‘molecules
of life,’ analogous to the pieces of a jigsaw puzzle, but in general they have
not provided a means to demonstrate how the pieces fit together. The size of
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these databases quickly grew so large that they could no longer be distributed
on traditional digital media, such as CDs and DVDs, let alone in the published
literature. As a result, access to large databases has primarily been either through
online applications, or by downloading the entire data set for local use.

DNA sequencing data: originally, the Sanger method (Sanger et al., 1977)
of capillary sequencing was the leading approach for DNA sequencing.
Capillary sequencing machines could, with a high degree of accuracy,
analyze about 600–800 bases of 384 DNA molecules simultaneously.
Next-Generation Sequencing (NGS) has revolutionized the genome
and metagenome sequencing research field. Roche 454, lllumina GA
and ABI SOLiD platform designs and sequencing chemistries use
different approaches, but they share the overall goal of massively parallel
sequencing, generating megabases or gigabases of short-read sequence
outputs. NGS has become considerably less expensive than the Sanger
method, and to date has been successfully effective in whole human
genome sequencing (Wheeler et al., 2008), RNA sequencing (RNA-Seq)
to study the mammalian transcriptome (Mortazavi et al., 2008), and ChIP
sequencing (ChIP-Seq) to identify binding sites of transcription factors
and DNA-associated proteins (Johnson et al., 2007).

Gene expression data: a DNA microarray is a plastic, glass or silicon chip
(array) containing thousands or millions of microscopic spots of cDNA
sequences or DNA oligonucleotides of a known DNA sequence on their
surface. The ability of a probe nucleic acid molecule to hybridize to the
microarray affixed sequence is used to determine the global expression
patterns, under specified conditions (e.g., toxicant exposure, disease, devel-
opment). DNA microarrays can be used to determine gene expression
patterns (Schena et al., 1995), copy-number variation (Pollack et al., 1999),
single nucleotide polymorphisms (Hacia et al., 1999), identify sequences
bound by protein (Ren et al., 2000), detect alternative splicing variants (Hu
et al., 2001), and to analyze the sequence of mutant genomes (Hacia, 1999).
MIAME-compliant public repositories to store and organize microarray data
sets have accompanied the rapid growth in the number of data sets gener-
ated (Brazma et al., 2001). The two most comprehensive microarray data
repositories are the NCBI’s Gene Expression Omnibus/GEO (Barrett et al.,
2009) and the EBI’s ArrayExpress (Parkinson et al., 2009). There are a
number of smaller specialized microarray repositories such as the Stanford
Microarray Database (Marinelli et al., 2008).

Proteomics and protein interaction data: at its simplest, proteomics is the
high-throughput identification and quantitative analysis of proteins. The
majority of proteomic technologies focus on the separation of proteins (by
molecular weight and pI), coupled with mass spectroscopy (MS) for pro-
tein or peptide identification and quantification (Shevchenko et al., 1996).
A number of MS-based technological approaches have been employed to
study the proteome, such as MALDI-TOF-MS (Shevchenko et al., 1996),
SELDI (Wright et al., 1999), and LC-MS (McCormack et al., 1997). Mass
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spectrometry has played a significant role in the characterization of pro-
tein post-translational modifications (Ficarro et al., 2002) and biomarker
discovery (Zhao et al., 2009). Several protein fragment databases facilitate
the identification of peptides within MS or tandem MS profiles, such as
Mascot (Perkins et al., 1999) and XTandem (Craig and Beavis, 2004). An
integrated public data repository, the PRIDE (PRoteomics IDEntifications)
database (Vizcaino et al., 2009), brings together protein databases, pro-
teomics publications and information on post-translational modifications
to support proteomic data analysis. Protein interaction capture technolo-
gies such as yeast two-hybrid (Uetz et al., 2000), protein microarray (Zhu
et al., 2001), affinity chromatography followed by MS (Ho et al., 2002),
and phage-display (Crameri and Kodzius, 2001) have been successfully
used to generate extensive interaction data sets. Currently, there are sev-
eral large interaction data sets for yeast, bacteria, and fruit fly, stored in
many interaction databases, including DIP (Salwinski et al., 2004), BIND
(Alfarano et al., 2005), BioGRID (Breitkreutz et al., 2008), IntAct (Aranda
et al., 2009), and MINT (Ceol et al., 2010).

Metabolomics: this is the high-throughput identification and quantification
of small molecule metabolites found in a biological sample isolated from
a cell, organ or organism. The major experimental techniques employed in
metabolomics are similar in nature to those found in analytical chemistry,
such as chromatography, nuclear magnetic resonance (NMR), and mass
spectrometry. A significant challenge with metabolomics is identifying and
characterizing a large number of metabolites at the same time and using
these metabolite signatures to identify disease biomarkers or to model
metabolic processes. Metabolomics is used in drug discovery (Kel, 2006),
toxicology (Griffin and Bollard, 2004), medicinal chemistry (Wishart,
2008), nutrigenomics (Gibney et al., 2005), and functional genomics
(Denkert et al., 2006). There are a number of publically accessible
metabolomics databases, examples of which are the Human Metabolome
Database (Wishart et al., 2009), Golm Metabolome Database (Kopka
et al., 2005), PubChem (Wang et al., 2009), and Metlin (Smith et al., 2005).

Data models and data formats for pathway knowledge bases: while the dif-
ferent pathway knowledge bases all share the ability to store pathway
information, they each have their own data models and formats, and differ-
ent query, visualization, and analysis tools, and also different data quality
requirements. Some pathway knowledge bases focus on simple relation-
ships between genes, proteins, and pathways, whereas others accommodate
more elaborate data structures describing relationships between genes, pro-
teins, small molecules, complexes, reactions, and pathways. It is important
to note that expert’s and curator’s opinions of data models vary greatly,
and this different interpretation of data that is seen in journal publications
also propagates into the content of pathway knowledge bases.
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12.3 Brief review of selected pathway
knowledge bases

The number of pathway knowledge bases and databases continues to grow.
There have been many efforts to capture biological pathways and provide human
and machine-readable systems. As of November 2009, PathGuide (Bader et al.,
2006), a highly comprehensive list of pathway knowledge bases, lists over 300
interaction and pathway databases and knowledge bases, categorized according
to the information they store: Protein–Protein Interactions, Metabolic Pathways,
Signaling Pathways, Pathway Diagrams, Transcription Factors/Gene Regulatory
Networks, Protein–Compound Interactions, Genetic Interaction Networks, and
Protein Sequence Focused. Different projects have emerged to provide biological
and pathway information at a higher level of abstraction. A common general
goal of these projects is the support of quantitative computational modeling of
biological pathways. Not only do resources need to be developed to store this
information but also standard exchange formats and languages for distributing the
data for analysis and use in visualization tools. A selection of these metabolic and
signaling pathway knowledge bases are described in Table 12.1. Here we compare
and contrast Reactome, KEGG, WikiPathways, NCI-PID, NCBI BioSystems,
Science Signaling, and PharmGKB.

12.3.1 Reactome

Reactome (Matthews et al., 2009; Vastrik et al., 2007; Joshi-Tope at al ., 2005)
is a free, open-source, expert-authored, manually curated, peer-reviewed and
highly reliable knowledge base of human biological pathways and reactions.
This database is used as an online textbook of biology and also to make dis-
coveries about biological pathways, thus providing utility to both biologists and
bioinformaticians. The focus of the Reactome knowledge base is human biolog-
ical pathways. If a specific process has not been directly studied in humans, the
species that the experiments have been performed in are directly curated, and the
process is manually projected back into human.

Pathways are cross-referenced to NCBI Entrez Gene, Ensembl and UniProt
databases, UCSC and HapMap Genome Browsers, KEGG Compound and ChEBI
small molecule databases, PubMed, and GO. The core unit of the Reactome data
model is the reaction. Entities participating in reactions are assigned to a specific
pathway. Examples of biological pathways in Reactome include signaling, innate
and acquired immune function, transcriptional regulation, translation, apoptosis,
the influenza and HIV life cycles in infected host cells, and classical intermediary
metabolism.

Each manually curated set of Reactome human reactions is used to compu-
tationally project reactions onto 22 evolutionarily divergent species for which
high-quality whole-genome sequence data are available, and a comprehensive,
high-quality set of protein predictions exist. These species include the laboratory
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mouse and rat, the nematode Caenorhabditis elegans , budding and fission yeasts,
two plants and several bacteria. This projection of the manually curated human
pathways onto model organisms provides a tool for the researcher to access
orthologous biological pathways.

The Reactome data model is based fundamentally on the reaction. A
reaction has input, and produces output that is different from the input by some
quantifiable measure. The inputs and outputs of the reaction are entities such
as protein, nucleic acid, organic molecules, chemical compounds, or complexes.
The reaction itself can be catalyzed by an entity, and the molecular process that
describes the catalyst’s function is associated with the catalyst. Every reaction
and entity in Reactome is associated with a species, and is assigned to a specific
compartment (or compartments if the entity is a complex). Every reaction is an
assertion of a minimal biological step, and each of these steps is supported by
experimental evidence, that in practice is represented by a link to the appropriate
literature reference.

Reactions are arranged in ordered steps, supporting the assertion that a reac-
tion must be preceded by a previous reaction before it can occur. In this way,
ordered reactions or pathways can be assembled. Pathways can contain reactions,
pathways, or both. Each pathway represents a broader biological concept, and is
used to divide the sets of reactions into human-recognizable domains of biology.

In a Reactome reaction, the expert author uses their knowledge of the field
and its history to create a computational review of the biology. The curator
assists the expert in breaking down each step of a pathway into a reaction.
Together they work through a sub-domain of biology to create a human- and
computer-accessible description of the biology, linking all of the gene, protein,
literature, and controlled vocabulary data together. Reactome connects an expert’s
knowledge of how the biological pathway works with numerous data sources.

12.3.2 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) has grown from 1
online database to 19 integrated knowledge bases organizing phenotypic,
genomic, chemical and systemic information (Kanehisa et al., 2008). Thirteen of
these databases are manually curated and six are computationally derived. KEGG
knowledge bases contain information about genomes (GENOMES), genes
and proteins (GENES), chemical substances (LIGAND), chemical compounds
(COMPOUNDS), approved drugs in US and Japan (DRUGS), relationships
between disease genes, pathways, and drugs (DISEASE), and ontologies
representing knowledge of biological systems (BRITE), (Kanehisa et al., 2008).
Each entry in a KEGG database has a unique identifier that is used to directly
link corresponding database entities. Users can browse the different KEGG
resources or search using the DBGET feature that searches across all the KEGG
databases (Goto et al., 1997). The KEGG PATHWAY knowledge base is a
collection of graphical diagrams (pathway maps) and associated text information
(pathway entries) that encompasses metabolism, environmental and genetic
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information processing, drug development, and cellular processes. Metabolic
processes comprise the largest and most complete group of pathways in KEGG.
Like Reactome, KEGG PATHWAY is a manually curated pathway database that
focuses on the curation of biological pathways from a number of organisms,
including human, plant and bacteria. Human disease pathways are further
categorized into four groups: infectious diseases, metabolic disorders, cancers,
and neurodegenerative disorders. Currently, KEGG PATHWAY contains 97
354 pathways from over 1215 species, generated by electronic inference based
upon orthology data from 342 canonical pathways. KEGG PATHWAY links
internally to the other KEGG resources that contain over 16 000 compounds,
9000 drugs and 10 900 glycans, and it links externally to NCBI, UniProt, GO
and other third-party databases. Each reference pathway is manually drawn
and is used as a template to computationally generate an organism-specific
pathway. The KEGG website provides a semi-dynamic visualization for the
presentation and navigation of its pathway information. Recently, a new global
map of metabolic pathways called KEGG Atlas was developed that allows
users to explore the complete metabolome and to map genomic, proteomic or
metabolomic experimental data. Tutorials are available to guide users on how
to navigate through pathways and the other KEGG resources.

12.3.3 WikiPathways

WikiPathways (Pico et al., 2008) is a recent addition to the pathway knowledge
base group and is unique in its approach to curation. Pathway curation is open
and community based, similar in principle to Wikipedia. Registered users of
WikiPathways can create new pathways, and edit existing pathways, using a
simple and intuitive graphical Web interface based upon PathVisio (van Iersel
et al., 2008). WikiPathways can represent biological pathways from multiple
species and many disciplines, including metabolism, signaling, gene regulation
and physiological functions. Species-specific annotation is provided and external
link outs to gene and protein databases such as Ensembl genome databases and
small-molecule databases such as HMDB. Users can browse and search pathways
by keyword, database identifier, species, and pathway categories. Community
curation utilizes researchers at all levels, from graduate student to experts, in order
to create and edit pathways. Once a user logs in, a pathway can be edited using
the PathVisio program. A version history keeps a record of all pathway record
edits. Each pathway record is displayed as an editable wiki page that is composed
of a pathway diagram, a description of the pathway, pathway components and
literature citations. Curation tags alert the author and community if edits are made
to the pathway. Tutorials and documentation are available to guide users through
pathway curation and use of the WikiPathways resources.

12.3.4 NCI-Pathway Interaction Database

The NCI-Pathway Interaction Database (NCI-PID) is a collaborative project
between the US National Cancer Institute (NCI) and Nature Publishing Group
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(NPG). It is an open-access online resource (Schaefer et al., 2009). The NCI-PID
is a partially human-curated collection of information about known biomolecu-
lar interactions and key cellular processes assembled into signaling pathways.
The focus of NCI-PID is on signaling pathways and other regulatory pathways
related to cancer. There are three types of data in the NCI-PID: (1) NCI-Nature
curated data, created by Nature Publishing Group editors and reviewed by experts
in the field; (2) BioCarta data, imported programmatically, in BioPAX Level
2 format, without post-translational modifications, and without expert review;
(3) human pathways from Reactome, which were curated by humans for entry
into Reactome, and which are annotated with UniProt IDs and post-translational
modifications when imported into NCI-PID. All NCI-Nature curated data are
generated according to the following principles and guidelines: human data is
the primary focus for this database, although interactions in other mammals that
are inferred to occur in humans are sometimes included with appropriate evi-
dence codes. Biologically relevant networks of well-documented interactions are
synthesized into predefined pathways. Molecular interactions are identified and
authorized for inclusion by their presence in primary peer-reviewed literature.
Editors identify interactions that are physiologically relevant, and assign evi-
dence codes to each interaction, which are then reviewed by experts in the field.
Consistency of nomenclature is achieved by using the HUGO (Human Genome
Organization) gene symbols, with UniProt names or aliases, and/or Entrez Gene
names or aliases for molecules. Gene Ontology (GO) controlled vocabulary terms
are used to annotate biomolecules and biological processes. PID offers a range
of search features to facilitate pathway exploration. Users can browse the pre-
defined set of pathways or create interaction network maps centered on a single
molecule or cellular process of interest. In addition, a batch query tool allows
users to upload long lists of molecules, such as those derived from microar-
ray experiments, and either overlay these molecules onto predefined pathways
or visualize the complete molecular connectivity map. Users can also download
molecule lists, citation lists and complete database content in extensible markup
language (XML) and Biological Pathways Exchange (BioPAX) Level 2 format.

12.3.5 NCBI-BioSystems

The NCBI-BioSystems Database (Geer et al., 2010) is designed to function as
a data integration service that provides access to data from KEGG, Human
Reactome, and EcoCyc. It provides a central repository of data that includes
gene, protein, or pathway data, along with related literature, and/or molecular,
and chemical data present within the Entrez biological database system. It is
designed to facilitate computational analysis of pathway and biosystems data
from these various sources. Thus, the NCBI-BioSystems database functions as a
‘clearinghouse’ for these other databases by integrating their data into the existing
NCBI Entrez databases, which include the Gene, Protein, PubMed and PubChem
databases. It links back to the original data source, in case more information is
needed, and/or the user desires further data analysis. Programmatic API access is
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available via the NCBI Entrez programming utilities. These include SOAP Web
services and other APIs.

12.3.6 Science Signaling

Science Signaling (previously Signal Transduction Knowledge Environment;
STKE) provides the Database of Cell Signaling through free subscription to
academics and researchers (Gough and Ray, 2002). Like Reactome, Science
Signaling is an expert-authored and peer-reviewed curated database of signaling
pathways. The Database of Cell Signaling encompasses many areas of biology
across several organisms. Users can browse and search over 140 Connection
maps, dynamically generated pathway diagrams based upon GIF and SVG for-
mats. These signal transduction pathways are categorized into two distinct types.
Canonical Pathways reflect a generalized view of a given signaling pathway
across all species. Specific Pathways represent signaling pathways that exists in
a particular cell, tissue or organism. The Canonical pathway is the foundation
on which the specific pathways are organized. For example, a user viewing
the Filamentous Growth Pathway in Yeast (Specific Pathway) can navigate to
the ERK1/ERK2 MAPK Pathway, its Canonical Pathway. Components of these
pathways are similarly classified. Each component of a specific pathway has a
‘parent’ canonical component, which is referenced within a canonical pathway;
users can navigate between these component types. The Database of Cell
Signaling allows the pathway expert to express an opinion regarding the strength
of the evidence supporting the relationships between the components within
the pathway; that is, Is the relation Demonstrated, Strongly Implied, Implied,
or Speculative. Science Signaling also provides a printed and online journal,
publishing novel peer-reviewed articles and reviews in the areas of network and
pathway biology and signaling transduction research. The website includes a
number of useful personalization features, allowing users to organize pathway
information and database searches into online folders associated with their
free subscription accounts. Hyperlinks also exist between the journal articles
and relevant information in the Database of Cell Signaling, providing a direct
connection between the published literature and the pathway knowledge base.
External links from pathways and components to nucleotide or protein sequence
data in NCBI Entrez database and model organism databases are also provided.

12.3.7 PharmGKB

PharmGKB, the Pharmacogenomics Knowledge Base, collects, encodes, and dis-
seminates knowledge describing the impact of human genetic variations on drug
response. The data set contains primary genotype and phenotype data, annota-
tion of gene variants and gene–drug–disease relationships supported by literature
reviews and primary literature. Curators summarize important pharmacogenomic
genes and drug metabolism and therapeutic pathways (Klein et al., 2004). Phar-
mGKB is a publicly available Internet research tool developed by Stanford
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University with funding from the National Institutes of Health (NIH), and is
part of the NIH Pharmacogenetics Research Network (PGRN), a nationwide
collaborative research consortium. The PharmGKB database is a central repos-
itory for genetic, genomic, molecular, and cellular phenotype data, including
clinical information describing pharmacogenomics research study participants.
The data includes, but is not limited to, clinical and basic pharmacokinetic and
pharmacogenomic research in the cardiovascular, pulmonary, cancer, pathways,
metabolic, and transporter domains.

12.4 How does information get into pathway
knowledge bases?

Data curation (or biocuration) in the life sciences has been around for at least
a decade. Biocuration started with the advent of the gene sequence databases
such as GenBank (Benson et al., 2009). Curation focused on the association
of functional annotations to a DNA sequence. This process required the life
scientist to submit the relevant information as the sequence was being submitted
to GenBank. As the requirements to store additional information (e.g., structure,
function) have increased, the role of the curator has evolved. Biocuration is now
part of the foundation driving the establishment and ongoing development of
biological data repositories. The Gene Ontology (GO) project is an example of life
scientists and curators working together to create a database of gene annotations
regarding the molecular function, biological process and cellular locations of
gene products (Barrell et al., 2009).

The biocurator collects, manages, annotates, analyses, and reviews biological
data. Creating a curated data record is a multistep process, entailing collection,
selection, review, and archival preservation. Collection and data organization are
important to minimize duplication. Data selection is critical to ensure the storage
of the necessary information, and understand the approaches and tools used in
the identification of relevant information. The process of assuring record quality,
or validation, ensures the fidelity of each data record. The review and valida-
tion processes incorporate documented record editing, curator feedback, and a
mechanism for updating public records in the future. Archiving and preservation
guarantees that the data is carefully organized, stored, accessible and maintained
for the future.

Pathway curation is the process of representing a set of related biological
events or reactions in a given biological context. Ideally, interacting molecules,
complexes, and reactions are annotated only to an extent that promotes clear
and accurate identification of the interacting entities. The quality, quantity, and
completeness of pathway data in knowledge bases vary significantly. Pathway
knowledge bases have different data formats, curation standards and author tools
supporting the data capture. Life scientists, clinicians and researchers have the
knowledge needed to build the pathways. Curators and editors reshape the struc-
ture of the knowledge to associate it with entries in primary databases. An
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overview of the Reactome curation process is shown in Figure 12.1. Databases
such as Reactome, NCI-PID, Science Signaling, WikiPathways and KEGG have
curators or editors to assist with pathway curation. We will use Reactome, a
mature manually curated pathway knowledge base, as a case study for mapping
biological pathways.
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Figure 12.1 An overview of the Reactome curation process.

12.5 Introduction to data exchange languages

Searching for, assembling, integrating, and visualizing pathway data with other
types of biological information and user data is a challenging and complex under-
taking. A number of steps are needed to facilitate the interpretation of pathway
and other biological data. Pathway data exchange languages should enable the
use of formatted data without rewriting data for each software tool or differ-
ent software environment and to guarantee the survival of pathway data beyond
the life of the software used to create it. Pathway knowledge bases gather and
exchange data in different formats: database dumps, flat file formats and data
exchange languages such as BioPAX, SBML, or PSI MI and proprietary formats;
for example, KGML and GPML. The BioPAX, SBML, and PSI MI exchange
formats are described, and the adoption of these formats by pathway knowledge
bases discussed.

12.5.1 SBML

Systems Biology Markup Language (SBML) was developed by the Systems
Biology Workbench group and is supported by a relatively large user commu-
nity, many third-party software tools, and several online data repositories. SBML
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is an XML format language for the exchange of computational models of biolog-
ical pathways and processes (Hucka et al., 2003). The current implementation,
Level 2, focuses on the description of biochemical network and pathway mod-
els, such as intermediary metabolism, signal transduction pathways, and gene
regulation. Each SBML model consists of a list of optional components, includ-
ing compartments, species, species types, reactions, and events. Compartments
describe the environment with defined boundaries in which the reaction takes
place. There can be multiple compartments in an SBML model, and every entity
should be assigned a compartment. The term species is used in SBML to describe
the entities (protein, small molecule, etc.) that take part in the reactions, and the
species type refers to the type of entity that can contribute in reactions. For
each species it is possible to list the initial amount and concentration and if
these values change in the course of the reaction. Reactions represent interac-
tions between species or transformation, transport or binding reactions. Events
define the changes that can occur in the model; for example, the event initiator,
time limitations, and so on. The SBML model can contain mathematical func-
tions, expressions, and units. Extra information and link-outs to external sources
can be assigned to SBML note and annotation fields. SBML has become the de
facto standard for pathway modeling, and work is in progress to draft SBML
Level 3, a more modular structured language with a core set of features and
optional packages. Some of the key additions to SBML Level 3 include layout
and display information for pathway diagrams, hierarchical model composition,
description of multi-component species, quantitative and steady-state models. An
open-source library to help users read, write, and validate SBML files is available
called libSBML (Bornstein et al., 2008). Examples of software tool support for
SBML are CellDesigner (Funahashi et al., 2003) and Copasi (Hoops et al., 2006).

12.5.2 BioPAX

Biological Pathway Exchange (BioPAX) is a collaborative effort among members
of the BioPAX working group to develop a data exchange language to describe
biological pathways data (Luciano, 2005). BioPAX is implemented in both an
XML schema and OWL-DL (a standard for the representation of ontologies). At
the time of this writing, BioPAX Level 3, Release 1.0 has just been approved.
BioPAX Level 3 focuses on molecular and genetic interactions, metabolic path-
ways, signal transduction pathways, and gene relations. All objects in BioPAX
are organized as a hierarchy of inherited classes. The BioPAX ontology consists
of the root level Entity class and four subclasses: Pathway, Interaction, Physi-
calEntity and Gene. Entity is a unique biological object or unit. Pathway is a
series of interactions, often forming a network. Interaction refers to the relation-
ship between entities, for example, protein–protein interaction. PhysicalEntity
has five subclasses that describe the different objects that interact, for example,
complex, DNA, RNA, protein, and small molecule. Finally, Gene is not a physi-
cal entity and is a simplification of the concept of a gene for genetic interactions.
There are a number of subclasses for Interaction; each limits the possible role
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and the number of possible interactors, for example, control having catalysis and
modulation. Specifying interacting molecules and interaction details in a pre-
defined class hierarchy promotes efficient sharing of the information between
databases. Additional data and hyperlinks to external sources can be assigned to
BioPAX objects. A library to help users read and write BioPAX files is available
called Paxtools. Software tools are also available to visualize and manipulate
BioPAX files, such as Cytoscape (Shannon et al., 2003).

12.5.3 PSI MI

The Proteomics Standards Initiative Molecular Interaction XML format (PSI MI)
was defined by the Proteomics Standards Initiative (Hermjakob et al., 2006). The
aim is to create a standard data exchange format for molecular interaction and pro-
teomic data representation to enable data comparison, validation, and exchange.
A PSI MI record typically consists of one or more protein–protein interactions.
The core element of the PSI MI 2.5 data model is the entrySet. Each entry-
Set consists of six entries. The source and availabilityList refers to the source
of the interaction data, usually the original database and the copyright state-
ment, respectively. Experimental parameters and publication details are referred
to in the experimentList. A list of interactors and their references are defined
by interactorList. The interactionList refers to the list of interactions. Finally, the
attributeList describes the additional information that does not fall into one of the
other entries. Each entry has further properties that capture additional interaction
data. Furthermore, PSI MI makes extensive use of controlled vocabularies, which
are viewed as an important part of encoding interaction data. PSI MI is widely
supported by the interaction databases such as BioGrid, DIP, BIND, IntAct, and
MINT. Even though PSI MI was not designed for the inclusion of pathway data,
it is possible to represent pathway data as molecular interactions. The pathway
is described by the interactorList and the interactionList. PSI MITAB format is
part of the PSI MI 2.5 standard, and is used to describe binary interactions.

12.5.4 Comparison of data exchange formats
for different pathway knowledge bases

Reactome supports the major pathway data exchange formats, and provides data
in an open-source knowledge base. The data formats available from the Reactome
Data Download page are: interaction, reaction, and pathway data in formats
that include downloadable flat, MySQL, SBML Level 2, BioPAX Level 3 (and
Level 2) and PSI MITAB. A SOAP-based Web Services API is also available to
access the Reactome data programmatically. The Reactome Biomart tool assists
with data mining and data analysis by allowing fast queries across Reactome
data sets. For example, a user can create a query of the Reactome database
for reactions that contain a given protein. Furthermore, a user can combine a
query across the Reactome data set with a query from another database (e.g.,
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ENSEMBL). Pre-computed queries are also available for common searches; for
example, all genes in a given pathway.

The availability of Reactome data in the BioPAX format encourages dissem-
inated curation. For example, NCI-PID is one of the major pathway knowledge
bases to use Reactome’s BioPAX export as a source of pathway data. PID itself
distributes pathway and network data in BioPAX Level 2 or its native PID XML.
WikiPathways uses GenMAPP Pathway Markup Language (GPML) to promote
pathway data exchange. This representation is compatible with several third-
party data analysis and visualization tools, including GenMAPP (Dahlquist et al.,
2002), PathVisio and Cytoscape. Science Signaling’s Connections Maps database
is available in SBML Level 2. There are terms and conditions of use but it is free
for academic users. Some commercial companies such as Ariadne Genomics have
integrated the Connections Map data set with their bioinformatics visualization
and analysis tools.

KEGG PATHWAY data can be freely downloaded by academic researchers
from the KEGG FTP site, or accessed programmatically via KEGG Web Services
APIs (Moriya et al., 2007). Pathway data is available in a licensed and propri-
etary XML-based KEGG Markup Language (KGML). There is also a KGML+
file that is a hybrid between an SVG file (pathway graphic) and a KGML file
(text information). This provides a framework for automatic pathway diagram
generation and computational analysis. KEGG data may be used for modeling
and simulation purposes, but KEGG does not natively support SBML. There is a
KEGGconverter tool that converts the KGML into SBML Version 2 (Moutselos
et al., 2009). KEGG data also can be converted to BioPAX Level 2 using the
KGML-ED tool (Klukas and Schreiber, 2007).

BioPAX, PSI MI, and SBML are highly useful for the creation of various inte-
grative pathway knowledge bases and databases that can be widely used to model,
simulate, and visualize pathway and network data in various language formats.
These are not rival standards but rather provide complementary approaches to
describe related pathway and interaction information. Most pathway knowledge
bases, like Reactome, provide qualitative mappings of functional relationships
between pathway entities. These exchange formats allow the data present in var-
ious pathway knowledge bases to be used as a larger aggregate data source by
the researcher.

12.6 Visualization tools

Typically, research articles, reviews, and textbooks present pathway diagrams as
a simplified representation that doesn’t convey enough detail about the pathway
entities and relationships between them. The molecular mechanisms described
in the diagram are more complex, while other pieces of information such as the
transduction of the signal, the interactions between the entities are missing. With
high-throughput data capture technologies it has becoming increasingly impor-
tant to have tools available to integrate and visualize thousands of data points
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and entities in the context of the pathway diagrams. The challenge faced for
data visualization is not just the increasing volume of data but also the increas-
ing complexity of this information. To address this challenge, visualization tools
are available to scientists to illustrate pathway diagrams. There is a shift from
the reductionist approach (individual components and relationships) to scientific
discovery in systems-level process analysis; exploring the entire systems simulta-
neously. The latter relies heavily upon visual representations of pathway entities
and their relationships, behavior, and functionality.

The majority of pathway knowledge bases provide interactive visualization
tools allowing users to interact with the pathway diagram, linking to other data
about the molecules and relationships, such as Reactome, KEGG, PID, and Sci-
ence Signaling. These same four pathway knowledge bases also provide pathway
data in an XML format (i.e., BioPAX, SBML or proprietary format) that allows
users the opportunity to generate interactive visualizations of pathway data using
Cytoscape or CellDesigner.

Tools available through WikiPathways and Cytoscape allow users to manip-
ulate pathway diagrams and visualize user-supplied data. Initiatives are currently
underway to provide detailed descriptions of pathways in a standard, exchange-
able, computational format that incorporates pathway and biological information.
One such initiative that has been adopted by Reactome is the Systems Biology
Graphical Notation; SBGN (Le Novere et al., 2009). The aim of this standard
is to define a unified framework for the diagrammatic representation of biologi-
cal networks. The new entity-level pathway visualization tool for Reactome will
allow a user to view ‘textbook style’ illustrations of pathways (Figure 12.2).

12.7 Use case: pathway analysis in Reactome using
statistical analysis of high-throughput data sets

A typical user of the Reactome pathway analysis tools will have performed one
of the types of data capture experiments described previously. This user will have
generated a list (set) of genes that represent a measurable change that occurred
within the experiment. The steps required to generate this list of genes is not
within the scope of this review, but it is worth noting the general framework that
would have occurred to arrive at this list.

The simplest conceptual experiments are those that compare gene or protein
expression levels in the absence (control) or presence (experimental variable) of a
compound, perhaps a toxicant, therapeutic agent, or signaling molecule. Whatever
technique is used to collect the data, the initial experimental results are a large set
of data that must first be analyzed for internal variability and preparation artifacts.
Once internal controls are examined and integrated into a processed data set, a
statistical comparison of the control and variable measures can be performed.
Finally, the researcher generates a data set that, in this hypothetical case, would
yield a list of identifiers (IDs) with expression patterns that are altered in the pres-
ence of an experimental variable. This list can contain expression levels and gene
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Figure 12.2 A screenshot of the Reactome’s new entity-level viewer based upon
Systems Biology Graphical Notation. This ‘Google-maps-like’ pathway visualiza-
tion tool has a zoom in/out box available in the upper left and a ‘birds-eye view’
of a pathway provided in the lower left box. The entire pathway can be moved
within the window by clicking and dragging it. There is a Reaction or pathway
details section at the bottom of the page. Selecting from the event hierarchy to
the left centers the map on that event and highlights the molecules and reac-
tions. Scrolling over the Reaction names or the Molecule boxes will provide more
information.

or protein identifiers, or can be more elaborate, with the experimental variables
associated with a number of time points measured throughout the experiment.

The lists of identifiers generated by these methods often contain hundreds
or thousands of distinct entities. Examining such a list manually, laboriously
looking at identifiers and attempting to divine the biological significance of such
a collection, is extremely difficult, or impossible. What is required for meaningful
analysis is a method that analyses the set of distinct entities as a whole. Such a
method would identify subsets of identifiers that share characteristics, including,
but not limited to, function, biological mechanism, and logical biological pathway
association. The primary data for making such assertions is contained within a
number of different resources (described previously), but is not interlinked in a
manner that allows for biological pathway analysis.

Pathway knowledge bases are precisely the resource required. The primary
data used for construction of a pathway database has connected the relevant
data resources with biological pathway knowledge. The data model used in the
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pathway resource, in this case Reactome, provides a biological pathway
framework upon which experimental data may be analyzed, or ‘mapped.’ The
core of this framework, the reaction, associates the protein, nucleic acid, organic
molecules, chemical compounds, or complexes that are input and output with
each of the primary data sets that describe these entities. Each reaction is
associated with the experimental support for that reaction’s occurrence and, if
present, a catalyst entity and GO molecular function term.

The following is a description of pathway analysis in Reactome, and here we
would like to note that pathway analysis is generally similar in the various path-
way database resources described previously. The general concept of overlaying
experimental data upon a curated framework is shared. This is an ever-growing
opportunity for the researcher, and yet it poses challenges for the initial steps of
analysis. Our description of these initial steps for pathway analysis should serve
as a template for the researcher to access the high-quality, manually curated data
set that is present within Reactome, as well as a general primer for access to
other pathway databases.

The pathway tools are used to determine which reactions and/or pathways are
statistically overrepresented in a set of genes as specified by a submitted list of
identifiers. The user provides a given a list of identifiers, and the Skypainter tool
will identify common events for these identifiers. Skypainter accepts a number
of different types of identifiers directly, including: UniProt, Ref-Seq, Ensembl,
OMIM, Entrez Gene, Affymetrix, GO, KEGG COMPOUND, and ChEBI. It
should be noted that all purely numeric identifiers, such as from OMIM and
Entrez Gene have to have the abbreviated database name and colon prepended
to them, that is, MIM:602544, EntrezGene:55718.

If the user has a list of identifiers not included in this list, a number of
online resources are available for interconversion between identifiers. A notable
example of these resources is the DAVID Gene ID Conversion Tool (Huang da
et al., 2008)

The Reactome pathway tool picks out the total set of identifiers that participate
in an event. This is the subset of identifiers (for the given species) that have been
annotated in Reactome as participating in this event. This subset is then compared
to the submitted list of experimental identifiers of which N identifiers participate
in that given event (where N is the number of experimental identifiers that are
in the original Reactome set). The pathway tool calculates the probability of
observing at least N genes from an event (if the event is not overrepresented
in the submitted list of genes) by performing the one-tailed version of Fisher’s
exact test. If a gene or protein identifier list is submitted to the pathway tool,
the resulting report provides a p-value associated with each pathway containing
identifier ‘hits.’ If the p-value is smaller than or equal to the significance level,
that event is identified as overrepresented in the submitted list of genes.

Submitted lists can also contain identifiers followed (separated by space or
tab) by a numeric value. A time series can be submitted by providing multiple
values on the same line as each identifier, separated by a single space or tab. In
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this case, the pathway will provide a series of images representing each column
of expression data, generating a movie of the time series.

The pathway tool provides a number of different views of the data: statis-
tically overrepresented events in an ordered hierarchy of pathways and events,
statistically overrepresented pathways as an ordered list, and a mapping from sub-
mitted identifiers to reactions. The current Reactome pathway tool, Skypainter,
also provides graphical displays of reactions colored according to the number of
genes or compounds (as specified by the submitted list of identifiers) participating
in the given reaction, as well as links for downloading images. Future versions
of the pathway tool are expected to replace the Skypainter functionality with a
new pathway tool, as the view of the entire collection of biological reactions has
become too large to interpret. Each of the outputs described are represented as a
series of different panes.

It is easiest to understand the functionality of the tool by taking a ‘hands-on
approach.’ All Reactome tools are available through the ‘tools’ menu item that
can be accessed from any Reactome page. The current pathway tool for pathway
analysis can be accessed by selecting ‘Skypainter.’ Once the user arrives at the
input page, they will find a large text field where data can be directly typed,
pasted, or uploaded from a local file. We can demonstrate the functionality of
the pathway analysis tool by clicking on the word ‘identifiers’ in the directions
above the text field.

By clicking on ‘identifiers,’ a demonstration set of data is loaded into the
text field; see Figure 12.3. These identifiers are the UniProt identifiers that
correspond to entries found in the OMIM Morbid Map (ftp://ftp.ncbi.nih.gov/
repository/OMIM/morbidmap). OMIM is the Online Mendelian Inheritance
in Man data set, a continuously updated catalog of human genes and genetic

Figure 12.3 A text field is available on the tools pathway analysis page for data
submission. The text field accepts typed or pasted text, and allows the user to
upload a local file.
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disorders (http://www.ncbi.nlm.nih.gov/omim/). Depending on the version of
Reactome, clicking ‘Paint!’ or ‘Analyze!’ will send your data to the pathway tool.

The pathway tool analyzes the data and when complete sends the user to
the results page. The results page provides a list of statistically overrepresented
events as described previously; see Figure 12.4. Using Reactome version 30, the
most overrepresented event is ‘Formation of Fibrin Clot (Clotting Cascade),’ with
an unadjusted probability of 1.1 × 10−12 of finding the 19 submitted genes in
this event (which contains a total of 29 genes) by chance. Each event is colored
according to a heat map providing a visual cue as to which events contain the
most significant overrepresentation.

(a)

(c) (d)

(b)

Figure 12.4 Examples of pathway analysis in Reactome – a view of the current
Skypainter tool (a); the table of the worked OMIM example (b); future path-
way analysis result tables for multiple (c) and single (d) time-point analysis.
Online Mendelian Inheritance in Man, OMIM, is a Web resource created by the
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Bal-
timore, MD) and National Center for Biotechnology Information, National Library
of Medicine (Bethesda, MD), URL: http://www.ncbi.nlm.nih.gov/omim/.

Scrolling down the page provides access to different representations of the
data; future versions of the pathway tools will provide new functionality including
basic ID mapping, and an enhanced table view of the data.
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One of the unique opportunities that pathway tools provide is species com-
parison. Researchers working with a model organism can compare data generated
within that model organism species to any other species listed in Reactome. The
Reactome data set is meticulously annotated to ensure species fidelity within the
logical steps of a pathway. A series of events identified within a data set will
reference a single species only. Once a researcher has identified a pathway of
interest, they can easily look through other species, identifying specific proteins
and genes encoding the entities involved in the pathway of interest. This utility
can be used as a framework for the logical extrapolation of results from a model
system back to human.

12.8 Discussion: challenges and future directions
of pathway knowledge bases

Pathway knowledge bases such as Reactome have made important contributions
and advances in recent years. However, there are also major challenges remain-
ing. Although most pathway knowledge bases provide qualitative mappings of
functional relationships between pathway entities, there is a need to create com-
putational and mathematical models of canonical pathways. There is also a need
for much more quantitative data, such as reaction kinetics, entity stoichiometry,
molecule concentrations, and other cell- or tissue-specific data.

Important pathway knowledge base functions, such as the prediction of
drug/target associations and their relation to specific biological pathways, also
have major challenges. In particular, there is the need for a greater exchange
of chemical, physiological, pathological, reaction, and pathway data between
different pathway resources. Pathway knowledge base projects must maintain
and increase their commitment to collaboration and integrating biochemical,
biological, biophysical and chemical information data exchange formats. Such
collaboration will allow tremendous growth in computational pathway modeling.

The future directions of the pathway knowledge bases reviewed here are
driven by the fact that they are all Web applications, built on existing Web
technologies. As a result, the evolution of pathway knowledge bases has been
closely related to the evolution of Web technologies, such as ‘social networks’
that allow individuals to interact in online groups or communities. One example
of how social networks are influencing pathway tools is the appearance of ‘com-
munity curation’ efforts, such as WikiPathways. These allow end user biologists
to contribute annotations as pathway authors, and thus increase the speed and
accuracy of the curation process.

One of the most interesting and potentially important directions for pathway
knowledge base development is the incorporation of ongoing developments of
‘Semantic Web’ technologies. At present, pathway knowledge bases, such as
Reactome, rely on a manual curation approach that incorporates human knowl-
edge via traditional literature review by curators and experts. This is neces-
sary for the accurate association of genes and gene products identified through
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high-throughput or computational methods with specific biological pathways.
However, in the future, Semantic Web technologies, such as RDF and OWL, may
make it possible to accurately map new experimental or computational results to
specific biological pathways without the need for human curation. For example,
the use of RDF or other semantic technologies can allow precise RDF predicates
or other semantic markup to be embedded easily by biologist authors directly
into research articles as they are being written. If such articles are created, they
can then later be analyzed computationally, so that new data can be mapped
accurately onto specific biological pathways, in some cases without the need for
a human curator. In principle, this also could allow automated formal reasoning
processes to identify causal relationships between experimentally identified genes
and molecules within specific biological pathways (Splendiani, 2008).

Given these new technologies, the power and utility of future pathway knowl-
edge bases and other bioinformatics tools is likely to grow dramatically. Our
ability to create such powerful new knowledge tools will be limited largely by
our imagination.
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Methods and challenges
of identifying biomolecular
relationships and networks
associated with complex
diseases/phenotypes, and their
application to drug treatments

Mie Rizig

13.1 Complex traits: clinical phenomenology
and molecular background

Complex traits represent many physiological functions of the human body includ-
ing normal hemostatic functions such as pH control, blood glucose regulation, and
temperature maintenance. The majority of innate and acquired behavioral char-
acteristics in humans are also complex traits. These include memory, emotions,
and learning. In addition, the majority of modern-day illnesses like hypertension,
diabetes, obesity, cardiovascular diseases, immune-inflammatory, and neuropsy-
chiatric disorders exhibit the multifaceted nature of complex traits. The umbrella
of complex traits can be further extended to include the effects of drugs and
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chemicals on the body’s organs and patients’ responses to treatments. Thus,
understanding complex traits is crucial to comprehending the status of health
and diseases and in the exploration of management options.

Conventionally, a complex trait is defined as a phenotype whose features are
regulated by multiple genetic and environmental factors. This is in contrast to
monogenetic traits, which are directly controlled by variations in a single gene.
Complex traits do not follow the rules of Mendelian inheritance because the
relationships between their genetic variants and phenotypes are not linear, and
their associated genes do not always interact additively.

Although the above definition captures most of the fundamental aspects of
complex traits, it fails to reflect the intricacies of the clinical phenomenology and
molecular backgrounds.

Clinically, complex traits cannot be defined using single qualities; they are
usually described in terms of combinations of different heterogeneous phenotypes
or symptoms. These phenotypes can involve multiple organs and/or tissues types.
Some of the phenotypes or symptoms can be partially or entirely shared between
two or more other complex traits.

With regard to their molecular origins, complex phenotypes do not arise solely
from variations within DNA sequences of a particular gene or group of genes.
They usually result from several interactive intracellular processes composed
of a particular gene and/or genes and/or their products (e.g., RNA, proteins or
metabolites). These intracellular machineries interact in different combinations
and at different levels to form series of complex networks which are highly
dynamic and fluid, and at the same time extremely resilient. In addition, they are
highly specific to the affected cell or tissue types and they are ultra sensitive to
internal and external environmental conditions.

A cardiovascular disease such as Coronary Artery Disease (CAD) provides
an excellent example of the multifaceted nature of complex traits (Tegner et al.,
2007). CAD is a degenerative disease developing over years. It results from the
gradual alteration of the composition of the arterial wall (both intra- and extracel-
lularly) by stress from circulating blood cells and other plasma components. This
gradual wear and tear eventually leads to the formation of atherosclerotic plaques.
The rate of atherosclerosis development depends on environmental pressures and
on the genetic makeup of the individual. Environmental pressures relevant to
CAD include airborne pollutants (e.g., cigarette smoke), infections, food (specif-
ically cholesterol), and behavioral factors (e.g., stress and exercise levels). The net
effect of the environmental pressures is filtered through the individual’s genetic
makeup and is reflected in changes in blood flow and its constituents. Over years,
environmental and lifestyle factors alter gene expression in organs. Specifically,
changes in the expression of genes relating to energy metabolism and inflamma-
tion in the liver, fat, or skeletal muscle are believed to be particularly relevant
for CAD. In turn, alterations in gene expression are reflected in the circula-
tion, where metabolic and inflammatory markers synthesized in these organs can
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be detected. Thus, measurements of plasma constituents (e.g., cholesterol and
triglycerides), blood glucose and insulin levels, and inflammatory markers such
as C-reactive protein are the standard way to detect hypertriglyceridemia, hyper-
cholesterolemia, insulin resistance, diabetes, states of inflammation and immune
activation, and other CAD phenotypes. These, and other as yet unidentified con-
stituents of blood and plasma, determine the rate of progression of atherosclerosis
and severity of the cardiovascular injury (Tegner et al., 2007).

Unraveling the molecular secrets of complex traits represents one of the great-
est challenges facing geneticists in the twenty-first century. And as the discipline
advances, it has become apparent that simply identifying the genetic variants
underling these complex phenotypes is insufficient to understanding the whole
picture. It is also important to estimate the relationship or the contribution of
these gene(s) and their products to the phenotype under study. This needs to be
done both qualitatively and quantitatively; it is also crucial to clearly delineate
the nature of the interaction. These issues and the questions arising from them
will be discussed and developed throughout this chapter.

13.2 Why it is challenging to infer relationships
between genes and phenotypes in complex traits?

Classically, genetic studies (i.e., linkage and association studies) were used to
find loci associated with clinical traits. Fine mapping (positional cloning) of
these loci was then carried out in order to identify the causal genes and DNA
variants responsible for susceptibility to the disease-associated traits (Botstein
and Risch , 2003). This approach has worked particularly well for Mendelian
phenotypes. It has also begun to show some promising results for complex
traits – particularly with the use of high-throughput technologies capable of per-
forming whole genome association studies.

However, researchers’ initial optimism has stalled slightly. Most genetics
studies of complex diseases have simply produced long lists of loci associated
with the phenotypes. For example, interrogating the OMIM (On Line Mendelian
Inheritance in Man) database (www.ncbi.nlm.nih.gov/omim/) regarding genes
involved in the etiology of diabetes reveals that over 700 different loci have
been associated with the disease. With regards to other complex phenotypes like
obesity, the figure is nearly 500 candidate genes, and for schizophrenia or stroke
the number is approaching 200 potential candidate genes (correct at October
2009). These lists continue to grow at a fast rate.

Unfortunately, the vast majority of these genetic studies have failed to pro-
vide the functional information needed to understand the role that the associated
genetic variants play in causing phenotype/disease states. Further, from the results
of genetic studies alone it is impossible to infer definitely that the gene most
proximal to a particular DNA variant associated with the phenotype/disease is
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the actual gene causing the phenotype/disease. As a result, molecular biologists
have redirected efforts to explore alternative approaches to identify functional
relationships between complex traits and their claimed candidate genes.

The central dogma of molecular biology states that DNA provides the infor-
mation needed to code for proteins – the active components of the cell. Messen-
ger RNA (mRNA) is synthesized from a DNA template, resulting in the transfer
of genetic information from the DNA molecule. The mRNA then codes for the
protein. In this sense, studying the intermediate phenotypes or gene products (i.e.,
mRNA, proteins and their metabolites) of a particular gene and then combining
this information with DNA variations data from genetic studies can provide a con-
text within which it will be possible to understand a gene’s function in relevance
to the phenotype/disease.

This hybrid approach is not new; it was previously used successfully in the
context of monogenic traits. But its application in the identification of functional
relationships between complex traits and their candidate genes is not without
complications. The intracellular regulatory mechanisms by which cells control
their functions in complex traits are not direct. These mechanisms may involve
an intricate cascade of intracellular networks modulated by signals from the
extracellular environment. The mentioned networks include DNA variants, RNA
molecules, proteins, and metabolites. The resultant interactions between these net-
works and the environment determine the multifaceted physiological/pathological
processes underlying the phenotypes of complex traits/diseases.

Pinpointing and analyzing these multifaceted networks is technically demand-
ing, especially the identification of topological relationships between various
components of a system and the effect each component has upon the production
of another.

An example of a simplified intracellular regulatory network of a particular
complex phenotype is shown in Figure 13.1. In an attempt to simplify the picture,
a three-dimensional illustration composed of coordinates (x, y, and z) has been
used. Each coordinate shows different levels of interactions: (1) a horizontal
dimension or x coordinate represents interactions occurring between molecules
of a similar nature (e.g., DNA–DNA, RNA–RNA, and protein–protein);
(2) a longitudinal dimension or y coordinate represents interactions occurring
between molecules of different types (e.g., DNA–RNA, DNA–protein, and
RNA–protein); and finally (3) the third dimension or z coordinate represents
the environment within which the interactions take place. It is necessary to
include a third dimension because the products of DNA expression (i.e., mRNA
and protein) are highly dynamic and sensitive to changes in the environment.
Connectivity between the components of this network – at both the horizontal
and longitudinal dimensions – is highly specific to the phenotype and at the
same time it is extremely flexible, responding to changes within the environment.
Alterations in the environment (e.g., change of the pH or temperature or applying
new medications) results in the rewiring of the network’s connectivity and the
development of series of new varied networks between the same molecules,
which will lead to the modification of the phenotype.
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Figure 13.1 Schematic diagram of a simulated intracellular network in a com-
plex phenotype. The top layer represents DNA in the genome. Changes in the DNA
can occur with changes in transcription levels of mRNA, non-coding RNA (ncRNA)
and protein. The x, y axes represent interactions between similar molecules
(DNA–DNA, RNA–RNA, protein–protein), or dissimilar molecules (DNA–RNA,
RNA–protein, DNA–protein) respectively. The quantity and the quality of these
interactions determine the outcome of the phenotype or phenotypes. The z coor-
dinate represents evolution of the connectivity of the network if environmental
conditions change (see text).

Certain other genetic phenomena have amplified the difficulty of identifying
and analyzing the intracellular networks associated with complex traits (Schork
1997). These are:

(1) Polygenicity: complex traits are caused by a number of DNA variants
or mutations at different loci (which are likely to affect different physi-
ological systems). All these variants must be present before a system is
sufficiently challenged to produce the disease.

(2) Locus heterogeneity: the same complex trait is controlled in different
pedigrees by different genetic loci. Variations or mutations in any of
these loci confer disease susceptibility independently of each other, which
means that a mutation on specific loci causing a specific disease in one
population is not necessarily responsible for causing the same effect in a
different population.
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(3) Gene interaction or epistasis: the effects of one gene are influenced by one
or more other genes. In this case, a mutation or genotype in a particular
gene (i.e., epistatic or a modified gene) will confer susceptibility to a
degree dictated by the presence of other mutations or genotypes in another
gene or genes (known as hypostatic or modifier gene(s)).

(4) Pleiotropy: a single gene influences two or more phenotypic traits. Con-
sequently, a new mutation in the gene may have an effect on one or all
traits simultaneously. This can become a problem when selection of one
trait favors one specific version of the gene (allele), while the selection
on the other trait favors another allele. As a result, several possible rela-
tionships between these traits and the common controlling genetic locus
can occur depending on whether the influencing gene causes the disease
directly or through the modifications of other phenotypes. For further
explanation see Figure 13.2.

(5) Environmental vulnerability: genes and their products (RNA, proteins,
and metabolites) are highly modifiable by new environmental stimuli.

(6) Cis- and trans-regulation of gene expression: expression quantitative trait
loci (eQTLs) mapping studies are valuable in connecting complex traits to
their molecular causes. In these studies, gene expression levels are viewed
as quantitative traits, and gene expression phenotypes are mapped to par-
ticular genomic loci by combining studies of variation in gene expression
patterns with genome-wide genotyping (Gilad et al., 2008). Substantial
heritable variation in gene expression within and between populations
was found to be related to variations within DNA regulatory elements
(cis- and trans-regulatory elements) that control gene expression. A cis-
regulatory element is a DNA sequence located on the same DNA strand or
chromosome as the gene whose expression it affects. A trans-regulatory
element is a DNA sequence associated with the regulation of a gene
located outside the genomic region supporting the corresponding struc-
tural DNA region of the trans-regulatory element (i.e., a different DNA
strand or different chromosome). DNA variations in cis-regulatory ele-
ments result in cis-acting or proximal expression quantitative trait loci
(eQTLs). DNA variations in a trans-acting element result in trans-acting
or distal eQTLs (Figure 13.3). The characterization of key drivers control-
ling eQTLs is particularly challenging when trans-acting element(s) or
several combinations of cis- and trans-regulatory elements are involved
(see Figure 13.3). For more information on cis- and trans-regulation of
eQTLs, the interested reader is advised to refer to Gilad et al. (2008).

(7) Genetic circuits or feedback controlling mechanisms: these mechanisms
are represented by complicated types of positive, negative, and feed-
forward loops to ensure that the cells will have control over their gene and
protein expression, even in the presence of noise from other cellular com-
ponents (Figure 13.4). A positive feedback enables the generation of bi- or
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Figure 13.2 Diagrammatic representation of the possible relationships between
two traits (T1 and T2) and a common controlling genetic locus (G) when feedback
mechanisms are ignored. The graphs are depicted as Markov models showing
simple linear relationships between the nodes. Assuming the two traits are linked
to a common DNA locus and restricted by the fact that these variables are linearly
related, there are three basic relationships one can infer among the traits:

(1) The first trait is a causal factor for the second trait with respect to the DNA
locus. The example shown in Figure 13.2 (a) illustrates how the knockout of
the leptin gene in the ob/ob mouse results in a complete lack of expression
of the product (the first trait) which then leads to obesity (the second trait).
Thus, leptin can be considered as a causal factor for obesity with regard to
the ob/ob locus.

(2) The first trait is reactive to the second trait with respect to the DNA locus. The
example shown in Figure 13.2 (b) illustrates how the knockout of the leptin
receptor gene in the db/db mouse results in obesity (the first trait) because the
animal’s cells are not sensitive to leptin. Leptin levels increase (the second
trait) because of the obese state of the animal, and so in this instance leptin
expression would be reacting to the obesity phenotype instead of causing it
with respect to the leptin receptor locus.

(3) The two traits are independently driven by the DNA locus. The example shown
in Figure 13.2 (c) illustrates how eumelanin RNA levels and obesity pheno-
types are induced by an allele acting independently and simultaneously on
these two different traits in the Agouti Avy mouse (Zhu et al. 2008).
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Figure 13.3 Diagram illustrating cis- and trans-regulation of gene expression
traits. The white dashed rectangles represent genes controlled by transcriptional
units. The lined boxes with the circles represent transcriptional control units:
(a) shows a cis-control unit acting on a gene. DNA variations in this control unit
that affected the gene’s expression would lead to cis-acting (proximal) eQTLs; (b)
shows a trans-control unit regulating the indicated gene. DNA variations in this
control unit affecting the gene’s expression would lead to distal eQTLs; (c) shows
a single trans-control unit regulating multiple genes. DNA variations in this sin-
gle control unit could lead to a cluster of distal eQTLs (known as an eQTL hot
spot); (d) shows a cis-control unit and multiple trans-control units regulating the
indicated genes. DNA variations in these control units would lead to a complex
eQTL signature for the gene.

multi-stable responses depending on the duration and the intensity of the
initial stimulus. Bi-stability is the existence of two stable states, and it is
generated by an abrupt transition in the dynamics of a system that gen-
erates the new state (e.g., activation of a gene expression pattern leading
to a permanent cell phenotype). Bi-stability is the proposed mechanism
behind the storage of information and cellular decisions (e.g., cell pheno-
type). A negative feedback loop is an efficient mechanism for maintaining
product levels in a tightly regulated range, and it is one of the most basic
cellular mechanisms for controlling homeostasis. Feed-forward mecha-
nisms provide a redundant mechanism for the transmission of molecular
information by extending the duration of the signal and ensuring its
arrival at the intended site. The study of these controlling mechanisms and
their roles in regulating complex traits/phenotypes remains a challenge
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Figure 13.4 Diagrammatic representation for genetic circuits controlling pos-
itive and negative feedbacks loops within biological networks. (a) In a positive
feedback loop (left), the expression of a gene product is stimulated by its own
expression, thus enabling the generation of bi-stable responses depending on the
duration and intensity of the initial stimulus. (b) Another basic type of control is
negative feedback loops. When levels of gene A increase, expression of gene B is
induced, which represses expression of gene A (and its own expression). When lev-
els of A fall below a threshold, its production is stimulated because of the absence
of the repressor B. This control mechanism yields oscillations around a mean
value, which, in turn, depends on other parameters of the system such as synthe-
sis and degradation rates. (c) Feed forward loops (FFLs) consist of three genes:
A, B, and C. Gene A is a regulator of B and C. An FFL is coherent if the sign (acti-
vation or suppression) of the path A–B–C is the same as the sign of the path A–C.
If the signs do not match, the FFL is incoherent. FFLs can reject transient inputs
and activate only after persistent stimulation (i.e., TrkA and calcium signaling).
(d) The bi-fan motif, composed of two source nodes directly cross-regulating two
target nodes, is able to act as signal sorter, a synchronizer, or a filter (i.e., glycine
pathway, right). It also provides temporal regulation of signal propagation. (e) In
the single-input-module motif (SIM), modulator A controls the expression of a
group of species. This motif can generate an ordered expression program for
each of the components under regulation of A (i.e., Rtg1 mitochondrial pathway
in yeast, right). mRNA, messenger RNA; NMDAR, N -methyl D-aspartate recep-
tor; PI3K, phosphatidylinositol 3 kinase; PKC, protein kinase C; IRS1, insulin
receptor substrate 1; AC5, adenylate cyclase 5; SRC, steroid receptor coacti-
vator; GLYCR, glycine receptor; BAS1, biogenic amine synthesis related family
member 1; UPB11, ubiquitin specific peptidase 11; STO1, stomatin-1. Courtesy
of Villoslada et al. (2009).
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Figure 13.4 (continued)

(Villoslada et al., 2009). Figure 13.4 contains diagrammatic representa-
tions for some of the basic genetic circuits responsible from controlling
intracellular biological networks.

(8) Epigenetic phenomena such as DNA methylation and chromatin remod-
eling.
Clearly the complex phenomena outlined above have complicated the
task of dissecting the genetic background of complex phenotypes. In
order to overcome these difficulties, a systematic approach is needed
to firstly map the genes associated with the phenotype and, secondly,
to characterize the interactive networks between those genes and their
intermediate phenotype (RNA–Protein), and finally, to determine the
roles those networks have in causing the phenotype/disease or other co-
morbidities (Figure 13.5). In this way, certain molecular targets can be
selected specifically from these networks and used as diagnostic, prog-
nostic, and therapeutic targets.
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Figure 13.5 Model of how multiple genetic loci, gene expression or protein traits,
and disease traits interact in complex phenotypes. G1, G2 and so on to Gn rep-
resent variations in DNA that lead to changes in RNA or protein activity. As a
result of these changes, broader perturbations to the transcriptional network are
induced that ultimately lead to common human diseases like obesity. The disease
state can in turn lead to additional changes in the transcriptional network that
may give rise to co-morbidities of the disease. In addition to the genetic causes
of disease, environmental factors also play a critical role, as common human
diseases are the result of complex interactions among multiple genetic loci and
between the genetic loci and environmental factors.

In the next section, the different approaches used to identify functional rela-
tionships between key driving molecules of complex traits and their phenotypes
will be reviewed. The applications and challenges to modern medicine of these
approaches will also be explored.

13.3 Bottom-up or top-down: which approach is more
useful in delineating complex traits key drivers?

Traditional candidate gene approaches such as positional cloning, transgenic or
antisense knockdown, and chemical activation or inhibition of transcription were
used to identify functional relationships between candidate genes/genes’ products
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and their associated phenotypes. These approaches are called ‘bottom-up’ or
‘local’ since they start with a particular molecule or molecules and gradually build
up the relationships between them and the final phenotype. Such methodologies
were adopted simply because the technologies available at the time were limited.

The advantage of the bottom-up design is: it logically constructs simple
hypotheses and then formulates ways of investigating them. The major draw-
back is: it generates fragmented information and is unable to construct models
for whole biological systems. In essence, it failed to combine all the informa-
tion it generated. Further, because it was hypothesis driven, it required a priori
knowledge about each step of the system under study, and in reality such details
were often lacking.

Measuring entire biological systems simultaneously without any prior hypoth-
esis is crucial to understanding clinical and cellular responses in complex phe-
notypes. As explained above, the behavior of intracellular systems in complex
traits depends heavily on the dynamics of the system. The problem is that if
some parts are missing, the reconstituted system model may not behave like the
real system at all. Thus, it is crucial to understand the architecture of global reg-
ulatory networks by looking at the overall pattern of the biological process and
at the same time to find the single biological changes giving rise to a particular
alteration in the phenotype.

With the development of high-throughput technologies and bioinformatics,
a new holistic approach (also known as a ‘top-down’ approach) was increas-
ingly adapted to dissect complex biological systems. The top-down approach is
a reverse engineering method which looks at a snapshot of the entire biological
system without any prior hypothesis. The system is then gradually dissected in
an attempt to gain insight into the compositional subsystems.

This approach allows interactions of phenotype-relevant gene(s) and/or
gene(s) products to be analyzed simultaneously. This can be done by moving
gradually from the whole body or organ level to the intercellular level and then
to individual cell models (Katagiri, 2003). At the whole-body and intercellular
level, this approach can be used to identify ‘principal networks’ consisting of
many (but not all) the key interactions. The principal networks of disease at
the whole-body level will demonstrate how sub-phenotypes common to several
complex disorders (e.g., inflammation, immunity, metabolism, cell proliferation,
translation) can be integrated into a complex disease setting. In the next step,
key aspects of the principal networks, relevant to the phenotype under study, can
be investigated in relationship to disease development at the intercellular level
using animal models or specific cell types. Finally, those interesting aspects of
the principal network, isolated during disease development in animal models or
specific cell types, can be further tested using environmental perturbations with
compounds or metabolites or genetic perturbations, such as small interfering
RNA (siRNA), gene deletion or expression studies (Katagiri, 2003).

The difficulties of the top-down approach are that it requires repeated rounds
of manipulations of the biological system in order to assess its response to such
different conditions. These responses are best captured using techniques including
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whole-genome measurement tools. Such processes generate an incredibly large
amount of data. To make sense of this information, researchers need to be au
fait with extensive statistical analytical algorithms, comprehensive data mining
strategies, and computational modeling approaches (Tegner et al., 2007). The
accuracy of each one of these steps is crucial for the quality of the data and to
guide the next round of experimental measurements in an efficient way. If the
data generated fails to come up to standard or the system is not robust enough,
the old adage of ‘garbage-in-garbage-out’ will rear its ugly head.

In contrast to the bottom-up approach, which employs simple, direct, and
intuitive logic algorithms, the top-down approach demands more statistical and
bioinformatical skills because complex relationships and dynamics must be derived
from large data sets. This type of analysis requires sophisticated statistical packages
and scientists who are truly interdisciplinary (i.e., biologists with broad mathemat-
ical backgrounds and mathematicians with an extensive knowledge of biology).

Which approach is more useful in delineating complex traits key drivers?
The answer to this question is: Ideally both top-down and bottom-up approaches
should be used in combination to ensure all bases are covered. The top-down
approach distils the system into smaller parts. The bottom-up approach reconsti-
tutes the elementary steps into larger parts. If the results of these approaches meet
in the middle, and if they are consistent, an investigator can be confident he/she
is on the right track. In essence, information from the reductionist approach acts
as a constraint in the building of a holistic model (Katagiri, 2003).

13.4 High-throughput technologies and their
applications in complex traits genetics

The release of the human genome sequencing project in 2001 constituted a land-
mark in the evolution of molecular technologies. The vast amount of accumulated
information resulting from this discovery allowed the initiation of large-scale
studies using high-throughput technologies.

Initial studies focused largely on understanding patterns and frequencies of
structural genetic variants within DNA sequences, such as Single Nucleotide
Polymorphisms (SNPs), and their contribution to human biology. This was fol-
lowed by an explosion of new techniques addressing functional genomics and
other DNA products including mRNA transcripts, proteins and their metabolites.

Large numbers of whole Genome-Wide Association Studies (GWAS) have
been used successfully to determine disease susceptibility genes or mutations
in large numbers of complex diseases, for example in diabetes, inflammatory
bowel diseases, and neuropsychiatric disorders. Gene expression and protein
studies have been successfully applied to distinguish and classify subtypes of
diseases such as leukemia (Frankfurt et al., 2007), lymphoma (Iqbal et al.,
2009), melanoma (Duncan, 2009) and breast cancers (Correa Geyer and Reis-
Filho, 2009). In fields of infectious diseases and developmental genetics, high-
throughput technologies have allowed the rapid identification and sub-typing of



328 KNOWLEDGE-BASED BIOINFORMATICS

bacteria, viruses, and parasites (Bekal et al., 2003; Klaassen et al., 2004; Gall
et al., 2009). The technological developments have also revolutionized the fields
of pharmacogenomics and drug discovery. It has now become feasible to exam-
ine DNA variants which control drugs’ pharmacodynamics and to tailor patients’
management based on their unique genetic makeup, to ensure maximum efficacy
and reduce side effects (personalized medicine; Jain, 2009; John et al., 2009).

Hybrid approaches including different combinations of expression experi-
ments, genotyping, and protein high-throughput data (known as convergent func-
tional genomics approaches) were developed to assist in relating expression or
protein profiles of diseases or treatments to hot spots or loci previously impli-
cated genetically in a particular disease. These combined approaches played a
dual job in investigating the patho-physiological role of candidate genes as well
as the identification of new drug targets using simultaneous and integrated mod-
els. Table 13.1 lists the currently available high-throughput technologies and their
applications in relation to complex traits molecular biology.

13.5 Integrative systems biology: a comprehensive
approach to mining high-throughput data

While high-throughput technologies have provided a sudden increase in the
amount of data on the possible molecular mechanisms underlying complex traits
of health and disease, interpretation of this information remains a dilemma. The
accumulated facts and figures are usually devoid of context and cannot fully
explain the functional role(s) such genes or their products play in the phenotypes.
It has become increasingly obvious that a comprehensive approach of mining is
necessary to extract meaningful information from these extensive lists of data.

Systems biology was introduced as a method of lateral thinking. It aims to
provide a structured framework to mine high-throughput data by using an under-
standing of biological processes as integrated systems. In this approach, all parts
of the biological system are studied simultaneously, taking into consideration
their dynamic interactions within temporal, spatial, and physiological contexts.
It is important to stress that systems biology approaches not only focus on the
molecular parts (i.e., the genes, proteins, or metabolites) but they also take into
account their interactive relationships within the system.

To achieve this goal, functional models are constructed using experimental
data from as many diverse sources as possible, including genome, transcriptome,
proteome, interactome, metabolome, phenome, epigenomic, metagenomics data,
biochemical and kinetic experiments, and information from the literature. The
identified functional modules are then linked and compared to available models
in public repositories. Mathematical and computational analyses are then used to
generate new functional models based on the initial set of data and the available
information within the public databases. These combined models are then
refined through many iterative cycles of computational simulation, prediction,
and validation with other experimental results (Ng et al., 2006a). Figure 13.6
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Table 13.1 Methods of high-throughput technologies currently in use to
investigate complex traits.

Application Concept Technique

Structural
genomics
(genomics)

Identification of
structural
genetic
variants
through
linkage and
associations
studies

Recombinational cloning
High-throughput pyrosequencing
Genome-wide association studies (SNPs

arrays)
aCGH (array comparative genomic

hybridization) arrays
DNA methylation arrays

Functional
genomics
(transcrip-
tomics)

Identification of
changes
within gene
expression in
phenotypes
under study

cDNA/oligonucleotide microarrays
Serial analysis of gene expression (SAGE)
High-throughput RNA interference assays
Total analysis of gene expression (TOGA)

Proteomics Identification of
changes
within protein
structure and
function
including pro-
tein/protein
and
DNA/protein
interactions

Protein identi-
fication and
quantifica-
tion

2D gel electrophoresis
Mass spectrometry
Isotope-coded affinity

tag (ICAT)
Isobaric tag for relative

and absolute
quantification
(iTRAQ)

Stable isotope labeling
with amino acids in
cell culture (SILAC)

Protein/protein
interactions

Yeast 2-hybrid
screening system

DNA/protein
interactions

Chromatin
immunoprecipitation

Microarray technology
(ChIP-chip)

DNA adenine
methyltransferase
fusion proteins chips
(DamID)

(continued overleaf)
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Table 13.1 (continued)

Application Concept Technique

Metabolomics Identification of
metabolites
related to
phenotypes
under study

Gas chromatography/mass spectrometry
(GC-MS)

Liquid chromatography/mass
spectrometry (LC-MS)

Nuclear magnetic resonance (NMR)
Electrospray ionization/mass

spectrometry

Cellular Identification of
specific
cellular
components
within the cell

Tissue arrays
Cellular arrays, for example pMHC

cellular microarrays spotted with
pMHC complexes, peptide and MHC
class I or peptide-MHC class II

Experimental data
Genomic, transcriptomic, proteomic, metabolomic, phenomic

Biochemical and kinetic data

Gene regulatory
networks

Interaction
networks

Signaling
networks

Metabolic
networks

Functional
modules

Model

Simulation

Prediction

Hypothesis

Concur

Literature

Yes

No

Modeling

Information

Refine

Figure 13.6 Integrative framework for systems biology.
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illustrates the framework of mining high-throughput data in a context of
integrative systems biology. This integrative approach is essential to understand
the complexity of common human diseases like obesity and diabetes and
to generate new hypotheses. Of course, once a model has been constructed,
further study and experimentation is needed to more convincingly demonstrate
understanding of the state of a given molecular network, the interactions,
and, finally, how the networks change in response to different genetic and
environmental contexts.

There are currently over 150 publicly available databases, visualization and
simulations tools devoted to systems biology targets, including databases for
gene expression, proteomic and protein interaction, metabolomic and metabo-
nomic, and phenomic (Tables 13.2 and 13.3). Several consortia have been brought
together in an attempt to achieve high standards of data integration and uni-
fied languages for information exchange (Table 13.4). Numerous current projects
have adopted a systems biology approach to aid in disease exploration and drug
discovery (Table 13.5). For an extensive review on the resources available for
integrative systems biology, the interested reader can refer to Ng et al. (2006a)
and Davidov et al. (2003).

13.6 Methods applying systems biology approach
in the identification of functional relationships
from gene expression data

Genes do not function in isolation; they always group together into clusters
or so-called functional classes or modules. Each module controls a particular
common regulatory mechanism or intracellular signaling process. The task of
high-throughput data mining is to translate experimental data into functional mod-
ules and then utilize this information to infer intercellular regulatory mechanisms.

Several challenges arise with this task, firstly in defining, secondly in identi-
fying and visualizing, thirdly in calculating statistically significant changes, and
finally, inferring regulatory systems in these functional modules.

Three main approaches are used in mining functional genomics data in the
context of intracellular processes (Cavalieri and De Filippo, 2005). These are
methods:

(1) using gene expression values (intensities) to identify correlations between
genes (also known as clustering);

(2) classifying expression data into groups with specific annotated functions,
for example using biological terms derived with the aid of bioinformatics
initiatives such as the Gene Ontology (GO);

(3) using results from functional genomics in combination with existing bio-
logical information to construct novel biological networks.
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Table 13.2 Examples of currently available resources and databases for
integrative systems biology.

Type Database name Web link

ArrayExpress www.ebi.ac.uk/arrayexpress/
ChipDB http://staffa.wi.mit.edu/chipdb/

public/
ExpressDB http://twod.med.harvard.edu/

ExpressDB/
Gene Expression Atlas http://symatlas.gnf.org/SymAtlas/
Gene Expression Omnibus www.ncbi.nlm.nih.gov/geo/
GermOnline www.germonline.org/
Human Gene Expression Index www.biotechnologycenter.org/hio/
M-CHiPS www.dkfz-heidelberg.de/mchips/
NASCArrays http://affymetrix.arabidopsis.info/

narrays/experimentbrowse.pl
Oncomine www.oncomine.org/main/index.jsp

G
en

e
ex

pr
es

si
on

da
ta

ba
se

s

Stanford Microarray Database http://genome-www5.stanford.edu/
Yale Microarray Database http://info.med.yale.edu/microarray/
Yeast Microarray Global

Viewer
www.transcriptome.ens.fr/ymgv/

CIBEX http://cibex.nig.ac.jp/index.jsp

ProteinProspector http://prospector.ucsf.edu/
2D-PAGE/DIFF www.mpiib-berlin.mpg.de/

2D-PAGE/
dbPTM http://dbptm.mbc.nctu.edu.tw/
GELBANK http://gelbank.anl.gov/
X! Tandem www.thegpm.org/TANDEM/
ExPASy Proteomics Server www.expasy.org/
JHU ProteinDB2 http://proteomics.jhu.edu/dl/pathidb

.php
Rice Proteome Database http://gene64.DNA.affrc.go.jp/RPD/

main_en.html
OPD http://bioinformatics.icmb.utexas

.edu/OPD/
DynaProt 2D www.wzw.tum.de/proteomik/lactis/

Pr
ot

eo
m

ic
da

ta
ba

se
s

PRIDE www.ebi.ac.uk/pride/
RESID www.ebi.ac.uk/RESID/
SWISS-2DPAGE www.expasy.org/ch2d/
HPA www.proteinatlas.org/
PepSeeker http://nwsr.bms.umist.ac.uk/

cgi-bin/pepseeker/pepseek.pl
SWICZ http://proteom.biomed.cas.cz/
Peptide Atlas www.peptideatlas.org/
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Table 13.2 (continued)

Type Database name Web link

Human Metabolome
Project/Human Metabolite
Database

www.metabolomics.ca/

METLIN Metabolite Database http://metlin.scripps.edu/
Golm Metabolome Database http://csbdb.mpimp-golm

.mpg.de/csbdb/gmd/gmd.html

M
et

ab
ol

om
ic

da
ta

ba
se

s

The European Nutrigenomics
Organisation

www.nugo.org/metabolomics/

BRENDA www.brenda.uni-koeln.de/

DRSC www.flyrnai.org/DRSC-TOO.html
FlyBase http://flybase.bio.indiana.edu/
RNAiDB http://rnai.org/
OMIM www.ncbi.nlm.nih.gov/entrez/query

.fcgi?db=OMIM
Phenomic DB www.phenomicdb.de/
PhenoBank www.worm.mpi-cbg.de/phenobank2/

cgi-bin/MenuPage.py
MGI – Mouse Genome

Informatics
www.informatics.jax.org/

Ph
en

ot
yp

ic
da

ta
ba

se
s

SGD (yeast) www.yeastgenome.org/
PharmGKB www.pharmgkb.org/
YDPM www-deletion.stanford.edu/YDPM/

YDPM_index.html

TRRD wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/
JASPAR http://mordor.cgb.ki.se/cgi-bin/

jaspar2005/jaspar_db.pl
cisRED www.cisred.org/

G
en

e
re

gu
la

to
ry

da
ta

ba
se

s

TRED http://rulai.cshl.edu/cgi-bin/
TRED/tred.cgi?process=home

TRANSFAC Public database www.gene-regulation.com/pub/
databases.html#transfac

pSTIING http://pstiing.licr.org/
GeneNet wwwmgs.bionet.nsc.ru/mgs/gnw/

genenet/
STRING http://string.embl.de/
IntAct www.ebi.ac.uk/intact/index.jsp
MINT http://mint.bio.uniroma2.it/mint/

In
te

ra
ct

io
n

da
ta

ba
se

s

HiMAP www.himap.org/
BIND www.bind.ca/Action
DIP http://dip.doe-mbi.ucla.edu/
HPRD www.hprd.org/
MIPS/MPPI http://mips.gsf.de/proj/ppi/
Reactome www.reactome.org/

(continued overleaf)
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Table 13.2 (continued)

Type Database name Web link

BioCyc www.biocyc.org/
MetaCyc http://metacyc.org/
PANTHER www.pantherdb.org/
KEGG www.genome.jp/kegg/
Biozon http://biozon.org/
BioCarta www.biocarta.com/genes/index.asp
GenMAPP www.genmapp.org/
STKE http://stke.sciencemag.org/

Pa
th

w
ay

s
da

ta
ba

se
s

AfCS www.signaling-gateway.org/
SPAD www.grt.kyushu-u.ac.jp/spad/

iHOP www.ihop-net.org/UniPub/iHOP/
OBO – Open Biomedical

Ontologies
http://obo.sourceforge.net/

GO – Gene Ontology www.geneontology.org/
CL – Cell Ontology http://obo.sourceforge.net/cgi-bin/

detail.cgi?cell
SO – Sequence Ontology http://obo.sourceforge.net/cgi-

bin/detail.cgi?sequence
PATO – Phenotype Ontology http://obo.sourceforge.net/cgi

bin/detail.cgi?attribute_and_value

G
en

e
on

to
lo

gy
da

ta
ba

se
s

The OBI
Consortium – Ontology for
Biomedical Investigations

http://purl.obolibrary.org/obo/obi

FMA – Foundational Model of
Anatomy

http://sig.biostr.washington.edu/
projects/fm/index.html

OBO_REL – Relation
Ontology

http://obo.sourceforge.net/
relationship/

Each one of these approaches addresses one or more of the challenges mentioned
previously with varying degrees of adequacy, as will be explained in the following
sections.

13.6.1 Methods using quantitative expression data to identify
correlations in expression between genes (clustering)

Clustering (also known as unsupervised learning) is a statistical approach iden-
tifying unknown classes of co-regulated genes using quantitative measures of
expression from whole-genome expression profiles. Clustering research utilizes
several different methods or statistical algorithms, for example hierarchal cluster-
ing, graphical Gaussian modeling, and self-organizing maps. All these methods
assume that the data generated is based on the mixture modeling of underly-
ing probability distributions. The important feature of mixture modeling is that
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Table 13.3 Examples of available tools for visualizing and simulating
experimental models in the context of integrative systems biology.

Pathways and
Networks
visualization
Tools

Osprey http://biodata.mshri.on.ca/osprey/servlet/
Index

Cytoscape www.cytoscape.org/
NetBuilder http://strc.herts.ac.uk/bio/maria/

NetBuilder/index.html
Pajek http://vlado.fmf.uni-lj.si/pub/networks/

pajek/default.htm
VisANT http://visant.bu.edu/
BioLayout www.biolayout.org/
Jdesigner/SBW http://sbw.kgi.edu/software/jdesigner.htm
Genmapp www.genmapp.org/

Model
visualization
tools

PaVESy http://pavesy.mpimp-golm.mpg.de/
PaVESy.htm

Cell Illustrator www.genomicobject.net/member3/index
.html

CellDesigner www.celldesigner.org/
E-Cell www.e-cell.org/
PNK 2e http://page.mi.fu-berlin.de/∼trieglaf/

PNK2e/index.html
Cellware www.bii.a-star.edu.sg/achievements/

applications/cellware/
BioUML www.biouml.org
CellNetAnalyzer/

FluxAnalyzer
www.mpi-magdeburg.mpg.de/projects/

cna/cna.html
Virtual Cell www.nrcam.uchc.edu
SigPath http://icb.med.cornell.edu/services/sp-

prod/sigpath/mainMenu.action
CellML www.cellml.org/
MCell www.mcell.psc.edu

Simulation tools SOSlib www.tbi.univie.ac.at/∼raim/odeSolver/
Jarnac http://sbw.kgi.edu/software/jarnac.htm
SpiM http://research.microsoft.com/en-us/

projects/spim/
PLAS www.dqb.fc.ul.pt/docentes/aferreira/plas

.html
Cellerator www.cellerator.info/index.html
Dizzy http://magnet.systemsbiology.net/

software/Dizzy/
Trelis http://sourceforge.net/projects/trelis
Monod http://monod.molsci.org/
WinSCAMP http://sbw.kgi.edu/software/winscamp

.htm

(continued overleaf)
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Table 13.3 (continued)

Biominer www.zbi.uni-saarland.de/chair/
projects/BioMiner/index.shtml

BIONETGEN http://vcell.org/bionetgen/
Moleculizer www.molsci.org/∼lok/moleculizer/

moleculizer-doc/index.html
Dynafit www.biokin.com/dynafit
Kinsolver http://lsdis.cs.uga.edu/∼aleman/kinsolver/
BSTLab http://bioinformatics.musc.edu/bstlab
Ingeneue http://rusty.fhl.washington.edu/ingeneue/

index.html
StochSim www.ebi.ac.uk/∼lenov/stochsim.html
Simpathica http://bioinformatics.nyu.edu/Projects/

Simpathica
BIOCHAM http://contraintes.inria.fr/BIOCHAM/
libSBML http://sbml.org/libsbml.html
SBMLToolbox http://sbml.org/software/sbmltoolbox/
MathSBML http://sbml.org/software/mathsbml/index

.html
SimCell http://wishart.biology.ualberta.ca/

SimCell/

Table 13.4 Examples of currently available consortiums regulating standards
and formats for integrative systems biology data exchange and depositions.

Data type Consortium Web link
of standard

Microarray MAGE-ML www.mged.org/Workgroups/MAGE/mage-ml.html
Microarray MIAME www.mged.org/Workgroups/MIAME/miame.html
Biochemical MIRIAM http://www.biomodels.net/miriam/
Interaction PSI MI www.psidev.info/index.php?q=node/31
Proteomic MIAPE www.psidev.info/index.php?q=node/91
Proteomic HUP-ML www1.biz.biglobe.ne.jp/∼jhupo/index-e.htm
Pathway BioPAX www.biopax.org/
Network SBGN http://sbgn.org/

posterior probabilities of class membership (i.e., the probability of belonging to
the class, given the observed gene expression data) are obtained.

A major limitation of clustering techniques is that they assume that func-
tionally related genes have similar gene expression levels; this assumption may
result in important genes – in particular regulators – being overlooked. It is vital
to realize in this context that transcription factors can change in function without
necessarily changing in expression. For example, they may change in config-
uration through binding to an activator or by proteolytic activation. Further, it
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Table 13.5 Examples of organizations and projects that adopt systems biology
approaches for disease studies and drug discovery efforts.

Project Web link Description

Beyond Genomics
Technology
platform

www.bg-medicine
.com/

Facilitates analysis of clinically
relevant samples and integrates
data from the gene, protein,
metabolite, and clinic for
biomarker and target
identification

Cellnomica www.cellnomica
.com

Conducts novel multi-cellular
modeling in drug discovery and
development

Cellzome www.cellzome
.com

Applies functional proteomics
technology for therapeutic target
discovery, validation, and drug
development

Department of
Energy’s
Genomes to Life
initiative

http://genomicscience
.energy.gov/

Plans to design and exploit new
high-throughput strategies to
obtain a blueprint of how living
systems function

Eli Lilly Centre for
Systems Biology

www.lilly.com Focuses on integration of proteomic
and genomic technologies to
support drug discovery efforts

Entelos www.entelos.com Bio-simulation company that
develops computer models of
human disease using novel
PhysioLab technology

Institute for
Systems Biology
Broad-based
program

www.systemsbiology
.org

Uses systems biology to investigate
the complex interaction of
biological elements that form
hierarchical networks that define
systems

Kitano Symbiotic
Systems project

www.sbi.jp/symbio/
symbio2/

The project aims to understand and
design biological systems, thus
creating a new paradigm in
biology with a focus on model
organisms including fruit

Physiome Sciences http://nsr.bioeng
.washington.edu/

Bio-simulation company that has
created and develops integrated
software platform for
computer-based biological
models applicable to drug
discovery

(continued overleaf)
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Table 13.5 (continued)

Project Web link Description

SurroMed www.surromed.com Develops and implements
biological marker discovery
platform to profile biochemical
components in blood and other
biological samples

BioSeek www.bioseekinc.com Uses systems biology approach to
study primary human cell disease
models

Source: Davidov et al. (2003).

must be noted that clustering does not directly address the physical or regulatory
relationships between functionally related genes; rather that it is a simultane-
ous quantitative measure of the abundance of certain transcripts under particular
experimental conditions (Cavalieri and De Filippo, 2005).

For a full review on techniques for clustering gene expression data and their
merits and disadvantages, the interested reader could consult Kerr et al. (2008)
and Zhao and Karypis (2005).

13.6.2 Methods integrating functional genomics into cellular
functional classes

In this approach, patterns of expression variation are examined and classified into
classes of genes with predefined intracellular functions, such as those involved in
metabolism, cell-division control, apoptosis, membrane transport, sexual repro-
duction, and signaling. The goal of this approach is to integrate information
obtained at the genomic level with biological information gathered over years of
research in various disciplines including molecular genetics, biochemistry, and
cell physiology.

Two internationally agreed methods are currently in use to annotate amalga-
mated expression data topologically into particular intracellular functional mod-
ules. These are: the Gene Ontology method and the biological pathways method.

13.6.2.1 Gene Ontology (GO)

The Gene Ontology (GO) database (www.geneontology.org/) is an international
consortium providing a controlled vocabulary to annotate and analyze the func-
tions of genes and the attributes of their products in any organism (Ashburner
et al., 2000). The current ontologies of the GO project are cellular components,
biological processes, and molecular functions.

The GO classification topologically represents data as directed acyclic graphs
which present the information in a hierarchical fashion (Figure 13.7). The hierar-
chy is able to encompass complex relationships such that a more specialized term
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Figure 13.7 Screenshot from the ontology editing software OBO-Edit, showing
a diagram of a part of a GO tree. The diagram illustrates the topological struc-
ture of GO terms. GO ontologies are described in terms of a graph, where each
GO term is a node, and the relationships between the terms are arcs between
the nodes. The relationships used in GO are directed – for example, a mitochon-
drion is an organelle, but an organelle is not a mitochondrion – and the graph is
acyclic, meaning that cycles are not allowed in the graph. The ontologies resemble
a hierarchy, as child terms are more specialized and parent terms are less spe-
cialized, but, unlike a hierarchy, a term may have more than one parent term. In
the diagram, relations between the terms are represented by the arrows; the letter
in the box midway along each arrow is the relationship type. Note that the terms
get more specialized going down the graph, with the most general terms – the
root nodes: cellular component, biological process and molecular function – at
the top of the graph. Terms may have more than one parent, and they may be
connected to parent terms via different relations.
Source: GO ontology web documentation (www.geneontology.org/GO.ontology.
structure.shtml).

(child) can be related to more than one less-specialized term (parent). As a result
of these different hierarchical levels, classes defined by the GO terms can be
highly redundant. For example, the biological process term ‘hexose biosynthetic
process’ has two parents, the hexose metabolic process and the monosaccharide
biosynthetic process. This is because biosynthetic process is a type of metabolic
process and hexose is a type of monosaccharide. When any gene involved in ‘hex-
ose biosynthetic process’ is annotated to this term, it is automatically annotated
to both hexose metabolic process and monosaccharide biosynthetic process.

A GO cellular component describes an anatomical structure within the cell
(e.g., rough endoplasmic reticulum or nucleus) or a gene product group associated
with such a structure (e.g., ribosome, proteasome or a protein dimer).

A biological process is a series of events accomplished by one or more ordered
assemblies of molecular functions. Typically, GO biological processes cover a
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broad range of functions including those of cellular physiological processes or
signal transduction. Examples of more specific terms are pyrimidine metabolic
process or alpha-glucoside transport.

A GO molecular function describes activities, such as catalytic or binding
activities, occurring at the molecular level. They do not specify where or when,
or in what context, these actions take place. Molecular functions generally cor-
respond to activities performed by individual gene products – although some
activities are performed by assembled gene product complexes. Examples of
broad functional terms are catalytic activity and transport activity; examples of
narrower functional terms are adenylate cyclase activity or toll receptor binding.

It can be difficult to distinguish between a GO biological process and a GO
molecular function, but the general rule is that a biological process must have
more than one distinct step. It is important to note that a biological process is
not equivalent to a pathway.

By way of a summary, one might talk about a gene product saying that it
is associated with or located in one or more cellular components, it may be
active in one or more biological processes during which it performs one or more
molecular functions.

Even though GO terms are very useful in the classification of genes according
to their functions, they are unable to connect or relate genes in the form of a
pathway. At the moment, GO terms lack the dynamics or dependencies (i.e.,
causality, directionality, or the type of interactions between components of a
given class) required to fully describe a pathway. All examples of GO ontologies
provided in this section were taken from the GO consortium web site (http://wiki
.geneontology.org/index.php)

13.6.2.2 Biological pathways

A biological pathway is a set of linked molecular components interacting with
each other over time to generate a single biological effect. This interaction is
commonly represented by a graph or diagram linking the interacting components.
The graph includes the idea of directionality, where lines become arrows, and
contain information about the organizing principles of the pathway. For example,
the energy and metabolite flow where the product of a reaction is either the
substrate or the enzyme that catalyzes a subsequent reaction.

A pathway can describe gene–protein interactions (e.g., genetic regulatory
pathways) or protein–protein interactions (e.g., signaling transduction pathways)
or protein–enzyme–metabolite (ligand) reactions (e.g., metabolic pathways).

The majority of pathways currently available are manually constructed using
molecular information from published materials. However, some interactions can
be created using prediction or kinetic modeling.

It is important to emphasize that the partitioning of interactions into pathways
is somewhat arbitrary. For example, participants in one pathway can be involved
in others; for example, malate dehydrogenase appears in six different metabolic
pathways in some databases. In addition, the selection of the start and finish points
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of a pathway is flexible and dependent upon the investigator’s priorities; such
flexibility allows mapping of the genotype to the phenotype in a dynamic fashion.

The development of pathway databases is continuing apace with numer-
ous resources currently available publicly (see Section 13.5). Examples include
KEGG (www.genome.jp/kegg/), BioCyc (http://biocyc.org/), Reactome (www
.reactome.org/), GenMAPP (www.genmapp.org/), and BioCarta (www.biocarta
.com/). Pathguide, the pathway resources list (www.pathguide.org/) gives ad-
dresses of over 300 biological pathways resources. These databases provide
advanced methods of visualizing and manipulating pathways, in addition to pro-
viding extensive repositories of well-established pathways from different species.
Figure 13.8 provides an example, the Wnt signaling pathway graphical maps
obtained from three different pathways databases.

A standard data exchange format for pathways has been identified by several
projects including BioPAX (www.biopax.org), CellML (www.cellml.org/),
PSI-MI (www.psidev.info/index.php?q=node/60) and SBML (http://sbml.org/
Main_Page).

Numerous computer packages and databases are available either commer-
cially or as an open source to help users map and visualize results obtained from
gene expression experiments into metabolic or signal transduction pathways;
examples include Rosetta Resolver (Rosetta Inpharmatics LLC), GeneSpring
(Silicon Genetics, Agilent Technologies), Acuity (Axon instruments), GeneGO
(GeneGo) and the Proteome Bioknowledge Library (Incyte). Freely available
computer applications include GenMapp (www.genmapp.org/) and Cytoscape
(www.cytoscape.org/).

These tools are not without limitations; for example, they fail to automatically
indicate the statistical significance of the change of a pathway, making it hard to
select the most interesting or important results (Cavalieri and De Filippo, 2005).

More recently, several software packages have started to address the issue of
significance of the alteration in expression or enrichment analysis of a particular
cellular pathway or GO process. Enrichment analyses calculate the significance of
differentially expressed genes which are overrepresented in particular pathways,
or functional classes. Programs addressing the issue of significance include Gene-
Merge (http://genemerge.cbcb.umd.edu/), GOstat (http://gostat.wehi.edu.au/),
Pathway Miner (www.biorag.org/index.php), and GoSurfer (http://bioinformatics
.bioen.uiuc.edu/gosurfer/). These applications utilize the Fisher’s exact test or
hypergeometric distribution to calculate the probability that a particular pathway
would contain as many, or more, affected genes as are actually observed;
the null hypothesis being that the relative changes in gene expressions in the
pathway are a random subset of those observed in the experiment as a whole.
Several factors have to be considered by these applications in order to assess
the significance of gene expression changes in a given pathway and to select the
most appropriate statistical test. These factors are: firstly, the number of open
reading frames (ORFs) having altered expression in each pathway; secondly,
the total number of ORFs contained in the pathway; thirdly, the proportion of
ORFs in the genome contained in a given pathway; and finally, correlation
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(a)

(b)

(c)

Figure 13.8 Three graphical representations illustrating the different maps’
outputs for the Wnt signaling pathways obtained by searching (a) BioCarta,
(b) KEGG and (c) GenMAPP databases.
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of the pathways changed. The main limitation of these approaches is that the
statistical packages inappropriately consider all the annotations as independent
categories. As stated earlier, GO terms and biological pathways are highly
interconnected systems with a great deal of redundancy. The fact that one gene
can be contained in several GO categories or multiple pathways affects the
use of hypergeometric statistics and/or the Fisher’s exact test, thus making it
difficult to correct for multiple hypotheses. Studies of different datasets have
shown that the application of a standard Bonferroni correction is often too
restrictive, and clearly discards a great deal of important biological information
(Cavalieri and De Filippo, 2005).

In conclusion, both pathways and GO ontology methods have provided a
big step forward in the understanding of the functional contribution of cer-
tain genes in complex phenotypes. Pathway analysis is more superior to GO
ontology in providing information about the type of interactions between com-
ponents taking into account directionality or causality. Both methodologies are
restricted by the shortage of knowledge currently available about the func-
tions of genes; and self-evidently they cannot provide information on genes of
unknown functions. However, even in cases where genes are involved in well-
characterized pathways, it is often not immediately obvious whether a particular
gene is causing the phenotype via the identified pathway or whether the gene
is involved in other pathways or more complex networks leading to the phe-
notype. For example, transforming growth factor, beta receptor II (Tgfbr2 ), a
recently identified and validated obesity susceptibility gene, plays a central role
in the well-studied transforming growth factor-beta (TGF-β) signaling pathway.
In addition, Tgfbr2 and other genes in this signaling pathway interact with hun-
dreds of other genes (Figure 13.9), meaning that it is possible that perturbations in
these and other genes may lead to diseases like obesity by controlling other path-
ways different from the TGF-β signaling pathway (Sieberts and Schadt, 2007).
Therefore, considering genes in the context of single pathways does not neces-
sarily provide a complete understanding of the role of a given gene in causing a
specific disease.

13.6.3 Methods combining functional genomics results
and existing biological information to construct novel
biological networks

13.6.3.1 Biological networks: definition and topology

Historically, graph theory was first described in the city of Königsberg, located
in the former Prussia. In the early eighteenth century, the citizens of Königsberg
entertained themselves by wandering around the city’s seven bridges to see
whether it was possible to walk a route that crossed each bridge exactly once and
then return to the starting point (Grigorov, 2005). In 1736, the Swiss mathemati-
cian Leonard Euler represented this problem as a cyclic graph and demonstrated
that it was impossible to visit each of its edges only once and return to the
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Figure 13.9 Tgfbr2 as an example of a gene belonging to a simple linearly
ordered pathway (in this case the TGF-β pathway); this gene interacts with other
genes from other different pathways in order to perform its function. (a) The clas-
sic view of TGF-β signaling involves Tgfbr2 as a key component; (b) shows the
same gene interacting with numerous genes in other pathways to form a network.
Tgfbr1, Transforming growth factor-beta receptor type I; Tgfbr2, Transform-
ing growth factor-beta receptor type II; Smad, Mothers against decapentaplegic
homolog; P, Phosphorylation. (Sieberts and Schadt, 2007).

beginning again (Euler, 1736). Later on, the development of graph theory ‘wan-
dered between randomness’ (Erdos and Renyi, 1959) and order (Cayley, 1857).
Both statistical and analytical methods were used to model network represen-
tations of natural systems (Grigorov, 2005). Since then, the words ‘graph’ and
‘network’ have been used interchangeably to describe the same concept. Lately,
however, the term network has been adopted to describe the natural system itself,
whereas graph has been employed to depict the mathematical object representing
the topology of the system.

Network modeling has emerged as a popular method of exploring complex
relationships within the context of biological systems. Interaction or associa-
tion networks were developed using pair-wise relationships between genes or
genes’ products including protein interaction relationships (Han and Ju, 2003),
and co-expression relationships (Zhang and Horvath, 2005; Ghazalpour et al.,
2006; Frankfurt et al., 2007; Saris et al., 2009), as well as other straightfor-
ward measures that may indicate association between any two components within
the system.
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The topology of biological networks is built of nodes and edges. Nodes are
depicted either as circles or some other shape which are then connected to each
other by lines representing the edges. Nodes in the networks typically represent
genes or genes’ products (e.g., mRNA, proteins or metabolites). The edges rep-
resent the relationships between any two components within the network. For
example, an edge between two genes may indicate that changes in the activity
of one gene lead to changes in the activity of the other gene, or, it may represent
the idea that the two linked expression traits are correlated in a given population
of interest. These edges can be ‘directed’ or ‘undirected.’ Directed edges have
connections which are specific in their direction; that is, if an edge allows a con-
nection between two nodes it can only occur in a particular way. To understand
this, the edges can be thought of as roads between the nodes – but the roads are
signed to be one way. For example, a gene may serve as the source of a direct
regulatory edge to a target gene by producing an RNA or protein molecule that
functions as a transcriptional activator or inhibitor of the target gene but not vice
versa. Networks diagrams generated by directed edges without feedback edges
between nodes are called directed acyclic graphs (or DAGs for short).

Edges can be changed in shape to represent the nature of the relationship
between the nodes. For example, inductive relationships may be represented by
arrowheads with an increase in the concentration of one node (where the node
might represent a gene or protein) leading to an increase in the other. Inhibitory
relationships are represented by interrupted dotted lines, with an increase in one
leading to a decrease in the other. In other words, if the gene is an activator, then
it is the source of a positive regulatory connection. If the gene is an inhibitor,
then it is the source of a negative regulatory connection. Further, nodes can be
color coded or changed in shape to represent changes in concentrations or status
of the components (e.g., over or down expression, methylation or adenylation).
Currently, quantitative information such as the strength of the interaction between
the nodes within a network is usually reported as binary measurements rather than
accurate measurements.

Other important topological features in network construction include degree,
distance or shortest path length, clustering coefficient, and betweenness (Zhu
et al., 2007a; see Figure 13.10). These terms are defined as follows:

(1) Degree: the number of links connected to one node is defined as its
degree. In directed networks, the number of edges that end at the node is
termed the ‘in-degree,’ and the number of edges that start from the node
is termed the ‘out-degree.’ A node with high degree is better connected in
the network and therefore may play a more important role in maintaining
the network structure.

(2) Distance: the shortest path length between two nodes is defined as their
distance. In an interaction network, the maximum distance between any
two nodes is termed as the graph diameter. The average distance and
diameter of a network measure the approximate distance between nodes
in a network. A network with a small diameter is often termed as a ‘small
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Figure 13.10 Graphical description of some commonly used topological terms
in biological networks. (a) Degree measures the number of connections one node
has. (b) Distance is the length of the shortest path between two nodes. (c) Diameter
is the maximum distance between any two nodes in a network. (d) Clustering
coefficient measures the percentage of existing links among the neighborhood of
one node. (e) Betweenness is the fraction of those shortest paths between all
pairs of nodes that pass through one vertex or link. All graphs are based on an
undirected network. Courtesy of Zhu et al. (2007a).

world’ network, in which any two nodes can be connected with relatively
short paths.

(3) Clustering coefficient: the clustering coefficient of one node can be cal-
culated as the number of links between the nodes within its neighborhood
divided by the number of links that are possible between them. A high
clustering coefficient for a network is another indicator of a small world.

(4) Betweenness: this is the fraction of the shortest paths between all pairs
of nodes that pass through one vertex or link. Betweenness estimates the
traffic load through one node or link assuming that the information flows
over a network primarily following the shortest available paths.

Different parameters govern the behavior of intracellular networks over time. In
most cases it is not clear how intracellular components at different levels in a
cell interact. Nor is it easy to predict the complete state of these mechanisms at
a given point in the future. For these reasons, dynamic modeling of a network
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and inference of the topology, that is, prediction of the ‘wiring diagram’ of the
network, is a very challenging process.

Interestingly, experimentation with construction of networks in biological
systems has demonstrated that biological networks exhibit scale-free and hier-
archical connectivity structures, which provides an insight into how biological
systems are ordered (Barabasi and Oltvai, 2004; Ghazalpour et al., 2006; Lum
et al., 2006). The scale-free property (Figure 13.11) exhibited by these networks
implies that most genes in a biological system are strongly connected to a small
number of genes often referred to as hub nodes. These hub nodes work as the
key drivers or regulators of that particular network. The hierarchical property
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Figure 13.11 Topological comparison between a random network and a scale-
free network. Degree distribution in random networks is bell-shaped. The scale-
free network has more high-degree nodes and a power-law degree distribution,
which leads to a straight line when plotting the total number of nodes with a
particular degree versus that degree in log-log scales. Courtesy of Zhu et al.
(2007a).
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implies that biological networks are highly modular, with genes clustering into
groups that are multiply interconnected with each other, but not as highly con-
nected with genes in other groups. Both properties are extremely important in
identifying key regulatory modules in complex phenotypes and in exploring new
drug targets, as will be explained by examples in Section 13.8.

Biological networks mapping applies a variety of different algorithms; most
of which use a combination of pattern prediction and systems biology to infer
information. Methods using genomic information to infer regulatory networks
rely on the identification of patterns using either the concept of partial correlation
or conditional probabilities to indicate causal influence; these methods use DNA
variants combined with other supplementary data of gene expression or proteins
in the proposed networks.

The following section will discuss the types of biological networks available
and their applications in molecular biology. The computation of these networks is
beyond the focus of this chapter. For readers interested in mathematical methods
and algorithms, the following references are recommended: Zhu et al. (2008);
Klamt and von Kamp (2009); and Christensen et al. (2007).

13.6.3.2 Classification of biological networks

Biological networks are commonly classified according to the type of the
molecules participating in them and the nature of their interactions. This method
of classification divides biological networks into: (1) gene regulatory networks,
(2) metabolic networks, (3) signal transduction or protein–protein interaction
networks, and (4) transcriptional regulation networks (see Table 13.6).

Table 13.6 Classification of biological networks based on the participating
molecules in the networks (nodes) and the nature of their interaction (edges).

Type of network Nodes Edges

Protein–protein network
(signaling transduction
networks)

Proteins Interaction between proteins

Metabolic network Metabolic products A reaction transforming
metabolite (A) into
metabolite (B)

Transcriptional regulation
network (protein–DNA)

Genes and proteins A transcription factor
(protein) regulates a gene

Gene regulatory networks
(functional association
network)

Genes Expressions of gene (A) and
gene (B) are correlated
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From a functional viewpoint, biological networks can be classified into causal
or association networks depending on whether the key nodes within the networks
are causal or reactive factors in relationship to the phenotype.

13.6.3.3 Interaction (association) networks

Interaction or association networks are formed by considering pair-wise relation-
ships between genes or genes’ products (i.e., RNA, proteins, and metabolites).
Examples of these networks include protein–protein interaction relationships
(signaling transduction networks), co-expression relationships (gene expression
networks), metabolic networks and other straightforward measures that may indi-
cate association between two genes.

Co-expression networks analysis is one of the most popular methods currently
available to explore functional modules and topological relationships within bio-
logical systems. Two approaches are used to build co-expression networks (Zhu
et al., 2008). These approaches differ depending upon whether or not the strength
of the interaction between two nodes within the network is considered. In the
so-called weighted method, the level of significance of the strength of the inter-
actions between nodes is set at a high threshold level of significance. And in
the un-weighted approach, which is more liberal, no threshold of significance
is applied.

In the weighted method, node–node relationships are encoded in a binary
form. Two nodes in the network are connected by an edge if the significance
level of the correlation measured meets some predetermined threshold (Davidson
et al., 2003; Lum et al., 2006). Topological terms such as node degree, closeness,
clustering coefficient, and betweenness (for explanations refer to Section 13.6.3.1)
are used to structurally visualize the measures for strength or ties between the
nodes within the network. Weighted networks are highly sensitive to the threshold
being selected, and in most cases the selected threshold is somewhat arbitrary. In
addition, the binary encoding can destroy information regarding the interaction
strength between two genes. This may result in restricting the ability to identify
higher-order relationships among the genes in the network.

In contrast, the un-weighted network assigns a connection weight to all pairs
of genes by applying a more liberal threshold whose parameters are determined
based on a biologically dependent scale-free topology (Zhang and Horvath, 2005).

Weighted gene co-expression networks analysis (WGCNA) was used success-
fully to identify functional modules in several complex diseases such as obesity
and neurological disorders (Fuller et al., 2007; Miller et al., 2008; Saris et al.,
2009). This type of analysis maintains the continuous nature of gene–gene inter-
action at the transcriptional level and is robust to parameter selection. However,
building these networks is more computationally demanding as all pairs of nodes
are simultaneously considered, so that as the number of nodes grows, the number
of pairs to consider grows exponentially.
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13.6.3.4 Inferring functional relationships from co-expression networks

Functional relationships can be inferred from co-expression networks using three
types of integrative systems biology approaches. These approaches include:

(1) Identifying functional modules (sub-networks) of highly interconnected
genes using methods such as clustering, GO ontology or pathways enrich-
ment analyses.

(2) Applying prior structural knowledge by recruiting information from dif-
ferent systems biology resources to filter information and define nodes
and edges within the network.

(3) Combining gene expression and genetic data to infer causal relationships.

In most experiments these methods are used concurrently or alternately, as will
be illustrated by examples in Section 13.8, to recruit information and construct
the desired networks according to the experimental needs.

Prior knowledge approaches, such as clustering, GO ontology and pathways
enrichment analyses can be applied to co-expression networks to identify func-
tional modules which are highly co-related to the diseases or the phenotype
under study. Because of the scale-free and hierarchical nature of co-expression
networks, those functional modules are likely to represent the hub or regulatory
nodes of the networks.

In addition, it has been demonstrated that these types of modules are enriched
for genes that associate with disease traits, and for genes that are linked to
common genetic loci (Zhu et al., 2008). In this way, one can identify those key
groups of genes that are perturbed by genetic loci that lead to disease, and that
therefore define the intermediate steps that actually define disease states (see
examples in Section 13.8).

Interestingly, dividing co-expression networks into functional modules
revealed a new concept called differential connectivity. Differential connectivity
is defined as different patterns of connections between nodes with respect to
different phenotypic groups within populations that have been profiled. For
example, given tissue samples from two phenotypic groups of individuals (say,
those who are responders to certain treatments versus those who are resistant),
a gene is considered differentially connected between the two groups if the
number of genes to which the gene is significantly correlated are significantly
different (Figure 13.12). The most interesting observation related to this pattern
of differential connectivity is that genes that are differentially connected between
two groups are not necessarily differentially expressed between the two groups.
Differential patterns of connectivity in gene expression data hold promising
potential as a diagnostic and prognostic tool in the field of clinical medicine.

A structural prior approach can be used to add a functional context to the net-
works. Information of variable types, for instance transcription factors, promoter
sequences, and protein–protein binding data, can be recruited from different
databases listed in Section 13.5 and then added to the networks. The recruited
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Figure 13.12 Hypothetical example of differential connectivity patterns between
expression profiles taken from a responding and a resistant patient to a particular
drug. The right side of the figure illustrates topological diagrams of the gene
expression areas enclosed within the white squares on the expression maps seen
on the left: (a) shows a responder where the representative gene (node in the
middle) is connected to six other genes (nodes at the periphery); (b) shows a
resistant individual, where the connectivity of the representative gene is reduced
by half.

information can be illustrated topologically through links between the nodes and
these databases, or they can be added to the edges. This information can also be
used as a filter to limit the number of possible edges.

Recently, more commercial programs and databases have provided the facil-
ity of visualizing networks within a context of functional classes. Examples of
these packages are GeneXPress and CARRIE. GeneXPress (http://genexpress
.stanford.edu/) is a new tool enabling users to combine cluster analysis with
analysis of biological attributes. Following cluster analysis of microarray data,
GeneXPress tests, firstly, for biological processes represented in a given cluster
and, secondly, for cis-regulatory motifs shared by genes within a cluster. Once
the analysis has been completed, the package will provide a p-value for the
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association, and integrate the pathway results with the structure of transcriptional
regulatory networks. This is a substantial improvement compared to other tools
currently available. Another recently developed program, CARRIE (http://cagt
.bu.edu/page/CARRIE), uses promoter sequence and expression data to construct
a regulatory network displayed in the form of an interactive graph. The network
data can be visualized with the genes mapped on KEGG metabolic pathways
(Cavalieri and De Filippo, 2005).

13.6.3.5 Combining gene expression and genetic data to infer causal
relationships

The previously mentioned approaches are helpful for characterizations of the
properties of biological systems, identification of highly connected (hub) nodes,
and discovery of functional modules that aid in the description of sub-networks
associated with disease. The major drawback they have, however, is that they
cannot be used to link changes in functional data (expression and protein data) to
their direct molecular causes (DNA variants); in other words, they have limited
ability to identify direct causal associations among genes and between genes
and phenotypes.

DNA variation is assumed to serve as a causal anchor for changes observed
in any phenotype (given that variation in DNA leads to changes in transcription
and other molecular trait activities). By integrating expression quantitative trait
loci (eQTLs) data of a particular phenotype with sets of genes that are identified
through genetic studies (linkage and association studies) it will be possible to
infer causal association between genes and a phenotype.

One simple approach is to map the expression of cis-acting expression quan-
titative trait loci (eQTLs) in the genetic loci linked to the studied phenotype
through linkage or association. From these expression data it is then possible to
construct networks identifying relationships between genes. Projecting genetic
information from association and linkage studies to the previously constructed
gene networks will partition the network of genes associated with a disease into
causal, reactive, and independent pieces with respect to a phenotype of interest,
so that genes supported as causal for the phenotype can be identified.

These concepts have been applied to varying degrees by several groups to
allow for the more general construction of gene networks by the integration
of genetic and gene expression data (Cervino et al., 2005; Ghazalpour et al.,
2006; Lum et al., 2006; Fuller et al., 2007; Sieberts and Schadt, 2007; Gilad
et al., 2008). The key to the success of this approach is the unambiguous flow
of information, from changes in DNA to changes in RNA and protein function.

Probabilistic Bayesian networks are popular for inferring the correct structure
of relationships both among genes and between genes and clinical phenotypes
(Zhu et al., 2007b). The relationships are usually depicted as Markov models and
the genetic information is used to give a sense of directionality.

It is important to note that causal relationships used in this type of network are
different from the standard causal interactions used in biochemistry and biology
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(i.e., two interacting molecules where one molecule physically or chemically
interacts with another to increase or decrease its concentration or activity leading
to further phenotypic changes).

The term causality in the probabilistic Bayesian causal networks is a statistical
inference rather than direct chemical or physical interaction. Statistical associa-
tions between changes in DNA, changes in expression, and changes in phenotypes
are examined for patterns of statistical dependency among these variables that
support directionality between them. The directionality then provides the source
of causal information (highlighting putative regulatory control as opposed to
physical interaction).

13.7 Advantages of networks exploration
in molecular biology and drug discovery

The modular architecture of biological networks that have been discovered has
dramatically altered the perspectives of those working on the interactions and
controls of biological entities. Probably the most important outcome of all these
discoveries is the availability of new tools to visualize and prioritize experimental
targets and leads.

Networks exploration has several valuable applications in the field of molec-
ular biology and drug discovery.

With regard to molecular biology, networks will:

(1) Help in finding the key drivers of complex disease.

(2) Provide methods for data mining and organization.

(3) Provide methods of generating and modeling new hypotheses.

(4) Help in the identification of sub-networks associated with different dis-
ease subtypes. This will assist in the discovery of new biomarkers for the
disease subtypes that can be used as diagnostic tools or used in classify-
ing patients into treatment groups. In addition, it will help in exploring
therapeutic targets that are specific to a given subtype.

(5) Provide a practical solution to deal with the problem of heterogeneity of
complex diseases. For example, rather than looking at a complex pheno-
type as a single entity, the phenotype can be defined by different pathways
associated with different molecular processes within subsets of networks.
By using different mixtures of these sub-networks, the phenotype can
then be defined molecularly in different populations as opposed to symp-
tomatically.

(6) Provide computational models to predict biological responses. Such mod-
els can be used to make predictions that can be tested experimentally, as
well as exploring questions that are not amenable to experimental enquiry.
For example, assessing the impact of a novel drug or a genetic mutation.
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With regard to drug discovery, networks will help to:

(1) Identify new drug targets. Genes will be selected for therapeutic inter-
vention in a disease taking into account nodes in the network associated
with other diseases, subtypes of the disease, and toxicity pathways, as
well as other clinical phenotypes that may be adversely affected.

(2) Calculate the mechanism of action of a given compound. This applica-
tion is particularly useful in preclinical studies. Network analysis can
better predict possible side effects, for instance by assessing the impact
of a compound on the gene networks of organs frequently involved in
side effects, such as the liver, kidneys, skeletal muscle, and visceral fat
deposits.

(3) Provide information on the genetic profiles and the current environmental
pressures of individual patients. With this information, therapies could be
tailored to the individual, and the individual network response to the
treatment could be monitored.

13.8 Practical examples of applying systems biology
approaches and network exploration
in the identification of functional modules
and disease-causing genes in complex
phenotypes/diseases

Example 1
An integrative systems biology and networks exploration approach to study mechanisms
of action of the antipsychotic drug clozapine in the mouse brain (Rizig et al., 2009,
unpublished data).

Background

Clozapine is an antipsychotic drug with superior clinical properties compared to other
similar psychopharmacological agents. Particularly, superior efficacy has been proven,
improving symptoms in patients suffering from so-called treatment-resistant schizophrenia.
However, its widespread use is restricted by side effects such as agranulocytosis and
diabetes. The mechanisms by which clozapine mediates its effects are not well understood.
There may or may not be an overlap between pathways modulating clozapine’s therapeutic
and toxic effects.

Aims

• to identify the brain pathways and systems changed by clozapine.
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• to link and compare the identified mechanisms with genes and pathways implicated
previously in schizophrenia in an attempt to understand why clozapine is a superior
drug to other antipsychotics.

• to understand the nature of interactions between the intracellular mechanisms
responsible for both the beneficial and detrimental effects of clozapine.

Methods
Gene expression data were gathered from Affymetrix microarray experiments to compare
the chronic gene expression profiles of clozapine and controls in the brains of mice after
receiving oral preparations of the drug for up to 12 weeks. Pathways overrepresentation
(enrichment) analysis was performed to identify signal transduction pathways significantly
overrepresented in genes significantly altered by clozapine versus control. Mouse gene
expression data were mapped to human signal transduction pathways via HUGO gene
symbols using the pSTIING database http://pstiing.licr.org/ (Ng et al., 2006b). Over 300
human signal transduction pathways from BioCarta, GenMAPP and KEGG have been
integrated into pSTIING. Perl codes were written to extract this information and to compute
the number of representations (gene hits) for each pathway. P-values for pathways over-
represented within sets of genes were then computed using the hypergeometric distribution
implemented in the R-language.

Gene products associated with significantly overrepresented signaling pathways are
collectively termed pathway-enriched gene sets. These pathway-enriched gene sets were
projected onto human protein interaction and transcriptional regulatory information in the
pSTIING database to generate functionally relevant networks (Figure 13.13).

These gene products were used as ‘seeding nodes.’ Using graph theory, gene products
in the network were represented by nodes, with the ‘seeding nodes’ colored in light,
mid or dark shades of gray. The network was generated by iteratively connecting up
interacting nodes using solid edges (denoting physical interactions between gene products)
or using dashed edges (representing transcriptional regulatory associations) following a
heuristic that specifies the inclusion of ‘seeding nodes’ up to two degrees of separation.
Network interaction or association ‘partners’ that were also differentially expressed were
identified and grouped with the original pathway-enriched gene sets to further extend the
network. The process was iterated until no new differentially regulated ‘partners’ were
found, resulting in an extended network that was enriched for differentially expressed
gene products triggered by clozapine treatment. A flowchart illustrating methods used for
network construction is shown in Figure 13.14.

To put the information in a functional context, networks were fully integrated into
the pSTIING database. Maps were displayed in dynamic graphical representations in both
compressed and scalable vector graphics (SVG) formats. With a suitable SVG viewer
such as Adobe SVG viewers, users can zoom in and out, search or move (pan) a net-
work map around within the viewing screen. Nodes were coded to represent interacting
components (i.e., dark gray nodes denote up-regulated gene products. mid-gray nodes
denote down-regulated gene products and light-gray nodes denote interaction/association
partners of induced gene products). Constructed regulatory networks comprise both tran-
scriptional regulatory modules and molecular interaction cascades organized within signal
transduction modules. The incorporation of transcriptional regulatory associations with
molecular interaction information was essential in linking distinct signaling modules and
in the creation of functional regulatory systems. Edges were used to represent interaction
or transcriptional regulatory relationships between components (i.e., solid edges denote
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molecular interactions and dashed edges denote transcriptional associations). In signaling
modules, these edges may be directed, denoting stimulatory or inhibitory interactions, or
undirected, representing molecular interactions that are neither stimulatory nor inhibitory
or where their stimulatory or inhibitory status is not known. The representation of a tran-
scriptional association was abstracted to indicate the relationship between two proteins,
one of which was a transcription factor that trans-activates the expression of the gene
encoding the other protein. The networks are supported by all the functionalities available
in pSTIING. For example, it is possible by clicking on a node to display only the query
node in question and its immediate interaction partners. This feature is useful for simplify-
ing network maps and to obtain more information about a particular node. The information
can be displayed in a separate window in the form of protein name, synonyms, primary
and secondary accession numbers, UniProt, gene symbol, Entrez Gene (Locus Link), Ref-
Seq (nucleotide), OMIM, protein domains, homolog, tissue expression and localization,
protein function, gene ontology, pathways, molecular interactions and interaction partners.
Further, interaction maps can also be progressively expanded outwards to display the next
interaction neighborhood or subsequent levels beyond, thus making it possible to ‘grow’
networks or extend signaling pathway modules in a desired direction beyond the original
interaction map. It is also possible to query interaction information across species by using
orthology groupings from Clusters of Orthologous Groups (COG/KOG) or UniRef 50/90
or Sequence similarity (BLASTP). Finally, pSTIING can provide the facility of linking
other gene expression and proteomic experiments to interaction and regulatory networks
via CLADIST, a clustering tool associated with pSTIING. This feature allows the con-
textual projection of co-expression patterns onto prior network information, facilitating
the assembly of protein interaction and transcriptional regulatory networks into functional
modules which facilitate direct comparisons between experiments. See Figure 13.15 for
an illustration of some of these functions. For more information on the pSTIING database,
the reader is advised to consult the paper by Ng et al. (2006b).

Results
Clozapine significantly changed gene expression in pathways related to several neuropro-
tective mechanisms. In addition, a significant number of genes implicated genetically or
linked to pathways functionally related to schizophrenia were changed by clozapine. These
included the glutamate receptor genes, retinoid receptor genes and microtubular associated
proteins. Pathways involving carbohydrate metabolism and food intake regulation were

Figure 13.13 Signaling transduction and transcriptional networks influenced by clozapine
in the mouse brain. Network was generated by projecting a set of differentially expressed
gene products by clozapine versus control and associated with significantly overrepresented
signaling pathways onto protein interaction and transcriptional regulatory information in
the integrative pSTIING database. (a) Network is delineated to show just physical protein
interactions alone. (b) Network showing transcriptional associations alone. Induced gene
products are represented by the darkest nodes, while down-regulated gene products are
denoted by mid-gray nodes. Solid lines represent physical interactions, while dashed lines
denote transcriptional associations.
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Figure 13.14 Flowchart illustrating methods used for network construction to identify
functional classes from clozapine gene expression profile in the mouse brain (Rizig et al.,
2009; unpublished data).

particularly affected by clozapine, which may help to explain the relationship between
clozapine and diabetes. Graphical networks showed substantial interactions between path-
ways related to both the therapeutic and toxic effects of each drug. Modeling the interac-
tions in the form of regulatory networks of transcription factors helped in the identification
of ‘cross points’ or hubs. These points within the network may be investigated in the future
to potentially modify drug responses.
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Figure 13.15 Illustration of functional information which can be recruited by the inte-
gration of the networks into the pSTIING database. Clicking an interaction node in the
network, for example, provides more information about a particular protein in a separate
window. In box (a) are the protein name, synonyms, primary and secondary accession num-
bers and protein function; these can be hyperlinked to several databases including UniProt,
Swiss-Prot, Entrez Gene (Locus Link), RefSeq, OMIM, Pfam, InterPro, AmiGo, and iHop.
Boxes (b), (c) and (d) provide expression, localization and homology information, pathways
lists, and interaction partners. The viewer is provided with the facility to select from the
list of interactors to refine the interaction map or to extend the network to the next level
of protein connections. An interaction node provides interaction details and experimental
evidence supporting that interaction, as shown in box (e) and (f). Pathways can be extended
in a desired direction by displaying subsequent interaction neighborhood levels centered
on interactors selected by users. It is possible to progressively expand outwards to display
the next interaction neighborhood or subsequent level beyond, as shown in box (g). Thus
it makes it possible to grow networks or extend signaling pathway modules in a desired
direction.

Example 2
Integrating weighted gene co-expression network analysis (WGCNA) with genotyping data
to identify weight-related functional modules and obesity driving genes in the mouse liver
(Fuller et al., 2007).

.
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Background

Weighted gene co-expression network analysis (WGCNA) can be used to identify function-
ally relevant modules to a particular phenotype. Combining genetic markers and WGCNA
can provide valuable information for prioritizing genes within a functional module. The
investigators in this study have combined two different approaches of WGCNA (i.e.,
single-network and differential network analyses) with genetic markers (SNP data) in
order to identify genes driving weight control in two genetically heterogeneous stains
of mice.

Single-network analysis describes the structure and topological properties (pathways
(modules) and their key drivers (e.g., hub genes)) of a single data set. In this approach,
all samples, irrespective of their clinical trait, are used for the network and module con-
struction. In contrast, differential network analysis aims to identify genes that are both
differentially expressed and differentially connected between diverse data sets.

Since module genes tend to be highly connected in co-expression networks, screen-
ing for differentially connected genes is related to studying the preservation of modules
between different networks. This approach can uncover differences in the modules and
connectivity between phenotypically distinct groups, and at the same time highlight the
conserved controlling modules. Combining both approaches with genotyping and QTLs
data provides a systematic approach for linking the phenotype to its causing genes.

Aims

• To identify and characterize functionally interesting modules related to weight reg-
ulation in the mouse liver.

• To combine gene expression and genotyping data to identify expression quantitative
trait loci (eQTLs) that perturb these modules.

• To report the genetic drivers for the weight-related identified modules.

Materials and methods
Gene expression data were collected from liver tissue of the female mice of two F2 crosses.
The first F2 data set (BXH) is inter-cross between inbred strains C3H/HeJ and C57BL/6J.
The second F2 data set (BXD) is inter-cross of two inbred strains C57BL/6J and DBA/2J.
BXH mice are ApoE null (ApoE −/−) and thus hyperlipidemic, whereas BXD mice are
wild type (ApoE +/+). BXH mice were fed a high-fat diet, and BXD mice were fed
a high-fat, high-cholesterol atherogenic diet. Body weight and related clinical traits were
measured in both sets of mice.

Two distinct network analysis approaches were used:

(1) Single-network analysis: in this approach data from all mice in each F2 inter-cross
were used to identify trait-related modules and eQTLs as follows:

• A weighted gene co-expression network was constructed from genome-wide
transcription data.

• Modules were identified using hierarchical clustering, and module centrality
measures (intra-modular connectivity) were calculated. Connectivity of a par-
ticular gene (also known as degree) is defined as the sum of connection strengths
with the other network genes. In co-expression networks, the connectivity mea-
sures how correlated a gene is with all other network genes.
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• Network modules were then analyzed for biological significance.

• Genetic loci driving functionally relevant modules within the network were
identified.

• Trait-related eQTLs are used to prioritize genes within functionally significant
modules. Figure 13.16 illustrates the steps used in the single-network analysis.

(2) Differential network analysis: gene expression data from 30 mice at both extremes
of the weight spectrum in the BXH dataset were selected. Two different networks
were constructed: the first network using the 30 leanest mice and the second net-
work using the 30 heaviest mice. The two networks were compared to identify the
non-preserved modules, the differentially expressed genes, and the differentially
connected genes.

Results

(1) Single network analysis

Hierarchical clustering of weighted gene co-expression networks constructed from the
liver gene expression data of both strains revealed 12 functionally relevant modules. Mod-
ules with highest significant score were related to mouse weight and abdominal fat pad
mass. The identified modules were highly conserved between BXH and BXD strains. A
significant relationship was identified between the weight module expression and a sin-
gle nucleotide polymorphism (SNP) marker on chromosome 19 (SNP19). This SNP was
reported to be associated with weight gain in previous studies.

To determine the genes that mediate between this eQTL and body weight (clinical
trait), the author ranked gene expression values based on their correlations with SNP19
and the weight trait. Genes were selected if they fulfilled all three criteria. First: their
expression values were highly associated with the body weight; second: they were highly
associated with a body weight-related eQTL (SNP19); and third: the genes have high intra-
modular connectivity. Nine genes within the weight-related expression module fulfilled
these criteria, including Fsp27 , which encodes a pro-apoptotic protein, and Gpld1 which
encodes glycosyl phosphatidyl inositol-specific phospholipase D1. Searching the Mouse
Genomics Informatics gene ontology database (www.informatics.jax.org/) and existing
literature revealed that these genes have a potential functional relationship to body weight
control.

(2) Differential networks analysis

To identify both differentially connected and differentially expressed genes between the
lean and the obese mice, the author plotted the difference in connectivity between lean and
obese mice versus the absolute value of the t-test statistic for each gene. This approach
gave a visual demonstration of how differences in connectivity can be related to differences
in expression between the two networks. Four sectors were identified as highly different
between the two networks (i.e., lean and obese mice networks).The two sectors which
contain most of the differentially connected genes (i.e., highly connected in Network 1 and
poorly connected in Network 2) were analyzed for functional enrichment using the DAVID
database (http://david.abcc.ncifcrf.gov/). These genes were found to be highly enriched
for extracellular and cell–cell interaction compounds; notably 12 epidermal growth factor
(EGF) or EGF-related factors.
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Figure 13.16 Overview of steps used by Fuller et al. (2007) for the weighted gene
co-expression network analysis (single-network approach). (1) Genome-wide transcrip-
tion data were used to build a weighted gene co-expression network. (2) Modules were
identified and module centrality measures (intra-modular connectivity) were calculated. In
co-expression networks, the intra-modular connectivity measures the strength of correla-
tion between a gene and all other co-expressed network genes. (3) Network modules were
analyzed for biological significance. (4) Genetic loci driving functionally relevant modules
within the network were identified. (5) Trait-related mQTLs were used to prioritize genes
within physiologically significant modules using information extracted from the strength of
connection between network genes within the network (i.e., intra-modular connectivity) and
gene significance (GS). Gene significance (GS) measures how correlated a gene expression
is with a clinical trait. Mouse body weight could be used to define a physiologic trait-based
gene significance measure. Likewise, SNPs can be used to define SNP-based gene signifi-
cance measures. The higher this value, the more significant a gene is. Courtesy of Fuller
et al. (2007).
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The author concluded that: integrating weighted gene co-expression network analysis
with genotype data has helped in identifying several functional modules in the mouse
liver. These modules are roughly preserved between the BXD and BXH mice. Connected
hub genes with the most significant intra-modular connectivity were found to have high
correlation with weight control. Combining gene expression results of these hub genes
with the genotyping data helped in identifying genes with potential causal relationships
to the weight gain/loss phenotype. The differential network analysis has shown that genes
that are differentially connected may or may not be differentially expressed. Changes
in connectivity may correspond to large-scale ‘rewiring’ in response to environmental
changes and physiologic perturbations. The list of module hub genes and the differential
connectivity patterns have potential uses for diagnostic and therapeutic targets.

13.9 Challenges and future directions

Researchers in life and biomedical sciences have few options available for them
to analyze the vast amount of data generated to elucidate how the cell’s numerous
fundamental components interact to give rise to complex phenotypes. Functional
module identification and networks provide one of the few frameworks which
systematically and simultaneously take account of all of the fundamental com-
ponents. Statistical inferences from networks will be the limiting factor as the
field of systems biology matures.

Understanding a particular network state that drives a particular disease (or
other complex phenotypes that define living systems) will require not only knowl-
edge of DNA and environmental variation and the changes these variation com-
ponents induce in the network, but also information on the previous states of
the network that led to the current state. While this more comprehensive recon-
struction of biological networks is still outside the scope of what is presently
doable, the types of approaches reviewed here represent solid first steps toward
this ultimate goal.

Even though the number of networks that can be reconstructed from the fun-
damental components of living systems is truly daunting, as work progresses in
this area, we will learn the rules that necessarily constrain the possible ranges of
molecular interactions, and, as a result, we will begin to capture the more con-
served network motifs that form the framework upon which all other interactions
are based.

The complexity revealed by a systems biology-motivated approach to elu-
cidating complex phenotypes such as multi-factorial illnesses or responses to
treatment should be embraced, given the potential to develop a better under-
standing of the true diversity of diseases and the constellation of genes that need
to be targeted to effectively treat these diseases.

As a result, physicians will have more options to effectively provide a diag-
nosis (identification of danger signs), prognosis (forecast of disease progression),
and treatment plans (selection of an appropriate course among multiple alter-
natives) for their patients. At the same time, these options can be tailored to
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the specific genetic- and health-profile of each individual patient (personalized
medicine) (Bolouri, 2008) (Ikediobi et al., 2009).

Coupling between molecular biology research tools and clinical IT systems
in a systematic way is imperative for personalized medicine. Semantic ontol-
ogy tools (for the association of meaning with data) and software for personal
genomics are currently deficient. These tools are essential for physicians to
interpret genetic, genomic, pharmacological, and medical data in order to make
educated decisions about management options. We expect that the future years
will witness great efforts from both academic and industrial fields to build inte-
grative databases for phenotypes and personalized genomics in order to eliminate
the gap between the clinical and the research arena.
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Trends and conclusion

The successful sequencing of whole genomes has offered tremendous opportu-
nities to understand various life processes/biological phenomena. Modern day
research offers a remarkable set of challenges, such as computationally predict-
ing the development of a single cell into an adult, synchronized functioning of
the cells as a complete organism, reconstruction of an organism and many more.
The answer to all these may not lie within the genome sequence itself but in the
network of molecular interactions, thus emphasizing the importance of maintain-
ing the database, not only of the building blocks but also their interactions for
methodical functional analysis as demonstrated in the book.

Also there is a great potential for designing the drugs efficiently and cost
effectively based on the knowledge of the target. Current bioinformatics has an
essential role to play in interpreting genomic, transcriptomic, and proteomic data
generated by high-throughput experimental technologies, as well as interpret-
ing information gathered from research in the field of traditional biology and
medicine. Sequence-based methods of analyzing individual genes or proteins,
and annotation of the whole genome or transcriptome, may now lead towards
personalized medicine.

This book discussed various aspects of knowledge-driven and data-analysis
approaches for acquisition, maintenance, integration, and interpretation of
biomedical data in Section 1 and 2. Section 3 covered various methods
for exploring genomes of a wide variety of species. Section 4 illustrated
biomolecular relationships and networks, their analysis and applications. The
focus of this book has been on the integration and application of various
methods for analysis and interpretation of the biomedical data, which can lead
to break-through discovery for understanding systemic functional behavior of
the cell and the organism.

To achieve a high level of coordination and management of data, participation
of researchers working with molecular data and scientific literature is vital. This
is apparent from the backgrounds of the contributing authors of each chapter
in the book. To help in correspondence, email is included for each chapter.
Also the correspondence to the editors can be addressed to Gil Alterovitz at
gil_alterovitz@hms.harvard.edu (or ga@alum.mit.edu). To keep pace with the

Knowledge-Based Bioinformatics: From Analysis to Interpretation Edited by Gil Alterovitz and Marco Ramoni
 2010 John Wiley & Sons, Ltd



368 TRENDS AND CONCLUSION

developments in this rapidly evolving field, readers can also participate in subject
talks apart from reading papers. Best wishes to the readers in elucidating the
structural and functional challenges.

Sincerely,
Gil Alterovitz, Ph.D.
Marco Ramoni, Ph.D.
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